Updating models
This commit is contained in:
parent
a1187722da
commit
b6af0f612c
@ -1,5 +1,5 @@
|
||||
plugins {
|
||||
id "org.jetbrains.kotlin.jvm" version "1.1.60" apply false
|
||||
id "org.jetbrains.kotlin.jvm" version "1.1.61" apply false
|
||||
}
|
||||
|
||||
allprojects{
|
||||
|
@ -22,7 +22,7 @@ object ConsoleVac {
|
||||
options.addOption("p", "port", true, "Port name in dataforge-control notation")
|
||||
options.addOption("d", "delay", true, "A delay between measurements in Duration notation")
|
||||
|
||||
if (args.size == 0) {
|
||||
if (args.isEmpty()) {
|
||||
HelpFormatter().printHelp("vac-console", options)
|
||||
return
|
||||
}
|
||||
@ -30,19 +30,18 @@ object ConsoleVac {
|
||||
val parser = DefaultParser()
|
||||
val cli = parser.parse(options, args)
|
||||
|
||||
var className: String? = cli.getOptionValue("c")
|
||||
if (!className!!.contains(".")) {
|
||||
var className: String = cli.getOptionValue("c") ?: throw RuntimeException("Vacuumeter class not defined")
|
||||
|
||||
if (!className.contains(".")) {
|
||||
className = "inr.numass.readvac.devices." + className
|
||||
}
|
||||
|
||||
val name = cli.getOptionValue("n", "sensor")
|
||||
val port = cli.getOptionValue("p", "com::/dev/ttyUSB0")
|
||||
val delay = Duration.parse(cli.getOptionValue("d", "PT1M"))
|
||||
|
||||
if (className == null) {
|
||||
throw RuntimeException("Vacuumeter class not defined")
|
||||
}
|
||||
val sensor = Class.forName(className)
|
||||
.getConstructor(String::class.java).newInstance(port) as Sensor<Double>
|
||||
.getConstructor(String::class.java).newInstance(port) as Sensor<*>
|
||||
try {
|
||||
sensor.init()
|
||||
while (true) {
|
||||
|
@ -22,7 +22,7 @@ shell.eval {
|
||||
PlotHelper plot = plots
|
||||
|
||||
|
||||
ParamSet params = morph(ParamSet, "params") {
|
||||
ParamSet params = morph(ParamSet,[:], "params") {
|
||||
N(value: 2.7e+06, err: 30, lower: 0)
|
||||
bkg(value: 5.0, err: 0.1)
|
||||
E0(value: 18575.0, err: 0.1)
|
||||
|
@ -47,11 +47,11 @@ SterileNeutrinoSpectrum sp = new SterileNeutrinoSpectrum(Global.instance(), Meta
|
||||
//beta.setCaching(false);
|
||||
|
||||
NBkgSpectrum spectrum = new NBkgSpectrum(sp);
|
||||
XYModel model = new XYModel(spectrum, new SpectrumDataAdapter());
|
||||
XYModel model = new XYModel(Meta.empty(), new SpectrumDataAdapter(), spectrum);
|
||||
|
||||
ParamSet allPars = new ParamSet();
|
||||
|
||||
allPars.setParValue("N", 2e6/100);
|
||||
allPars.setParValue("N", 2e6 / 100);
|
||||
//значение 6е-6 соответствует полной интенстивности 6е7 распадов в секунду
|
||||
//Проблема была в переполнении счетчика событий в генераторе. Заменил на long. Возможно стоит поставить туда число с плавающей точкой
|
||||
allPars.setParError("N", 6);
|
||||
@ -86,7 +86,7 @@ def data = generator.generateData(DataModelUtils.getUniformSpectrumConfiguration
|
||||
// allPars.setParValue("X", 0.4);
|
||||
|
||||
|
||||
ColumnedDataWriter.writeTable(System.out,data,"--- DATA ---");
|
||||
ColumnedDataWriter.writeTable(System.out, data, "--- DATA ---");
|
||||
FitState state = new FitState(data, model, allPars);
|
||||
//new PlotFitResultAction().eval(state);
|
||||
|
||||
|
@ -40,11 +40,11 @@ setDefault(Locale.US);
|
||||
//ModularSpectrum beta = new ModularSpectrum(new BetaSpectrum(), 8.3e-5, 13990d, 18600d);
|
||||
//beta.setCaching(false)
|
||||
|
||||
Meta cfg = new GrindMetaBuilder().meta(){
|
||||
Meta cfg = new GrindMetaBuilder().meta() {
|
||||
resolution(width: 8.3e-5)
|
||||
}.build();
|
||||
|
||||
ParametricFunction beta = new SterileNeutrinoSpectrum(cfg);
|
||||
ParametricFunction beta = new SterileNeutrinoSpectrum(Global.instance(), cfg);
|
||||
|
||||
NBkgSpectrum spectrum = new NBkgSpectrum(beta);
|
||||
XYModel model = new XYModel(spectrum, new SpectrumDataAdapter());
|
||||
@ -55,10 +55,10 @@ allPars.setPar("N", 6.6579e+05, 1.8e+03, 0d, Double.POSITIVE_INFINITY);
|
||||
allPars.setPar("bkg", 0.5387, 0.050);
|
||||
allPars.setPar("E0", 18574.94, 1.4);
|
||||
allPars.setPar("mnu2", 0d, 1d);
|
||||
allPars.setPar("msterile2", 1000d * 1000d,0);
|
||||
allPars.setPar("msterile2", 1000d * 1000d, 0);
|
||||
allPars.setPar("U2", 0.0, 1e-4, -1d, 1d);
|
||||
allPars.setPar("X", 0.04, 0.01, 0d, Double.POSITIVE_INFINITY);
|
||||
allPars.setPar("trap", 1.634, 0.01,0d, Double.POSITIVE_INFINITY);
|
||||
allPars.setPar("trap", 1.634, 0.01, 0d, Double.POSITIVE_INFINITY);
|
||||
|
||||
FittingIOUtils.printSpectrum(Global.out(), spectrum, allPars, 14000, 18600.0, 400);
|
||||
|
||||
|
@ -0,0 +1,69 @@
|
||||
package inr.numass.scripts.models
|
||||
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.context.Global
|
||||
import hep.dataforge.fx.plots.PlotManager
|
||||
import hep.dataforge.grind.Grind
|
||||
import hep.dataforge.grind.GrindShell
|
||||
import hep.dataforge.grind.helpers.PlotHelper
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.stat.fit.ParamSet
|
||||
import hep.dataforge.stat.models.XYModel
|
||||
import hep.dataforge.stat.parametric.ParametricFunction
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.data.SpectrumGenerator
|
||||
import inr.numass.models.GaussResolution
|
||||
import inr.numass.models.NBkgSpectrum
|
||||
import inr.numass.models.sterile.NumassBeta
|
||||
import inr.numass.models.sterile.NumassTransmission
|
||||
import inr.numass.models.sterile.SterileNeutrinoSpectrum
|
||||
|
||||
import static hep.dataforge.grind.Grind.morph
|
||||
|
||||
Context ctx = Global.instance()
|
||||
ctx.getPluginManager().load(PlotManager)
|
||||
ctx.getPluginManager().load(NumassPlugin)
|
||||
|
||||
new GrindShell(ctx).eval {
|
||||
ParametricFunction spectrum = new SterileNeutrinoSpectrum(
|
||||
ctx,
|
||||
Grind.buildMeta(useFSS: false),
|
||||
new NumassBeta(),
|
||||
new NumassTransmission(ctx, Meta.empty()),
|
||||
new GaussResolution(5d)
|
||||
)
|
||||
|
||||
def model = new XYModel(Meta.empty(), new NBkgSpectrum(spectrum));
|
||||
|
||||
ParamSet params = morph(ParamSet, [:], "params") {
|
||||
N(value: 1e+04, err: 30, lower: 0)
|
||||
bkg(value: 1.0, err: 0.1)
|
||||
E0(value: 18575.0, err: 0.1)
|
||||
mnu2(value: 0, err: 0.01)
|
||||
msterile2(value: 1000**2, err: 1)
|
||||
U2(value: 0.0, err: 1e-3)
|
||||
X(value: 0.0, err: 0.01, lower: 0)
|
||||
trap(value: 1.0, err: 0.05)
|
||||
w(300, err: 5)
|
||||
}
|
||||
|
||||
SpectrumGenerator generator = new SpectrumGenerator(model, params, 12316);
|
||||
|
||||
PlotHelper ph = plots
|
||||
|
||||
ph.plot((10000..18500).step(100).collectEntries {
|
||||
[it,model.value(it,params)]
|
||||
})
|
||||
|
||||
//
|
||||
// def data = generator.generateData(DataModelUtils.getUniformSpectrumConfiguration(10000, 18500, 10*24*3600, 850));
|
||||
//
|
||||
// FitState state = new FitState(data, model, params);
|
||||
//
|
||||
// def fm = ctx.getFeature(FitManager)
|
||||
//
|
||||
// def res = fm.runStage(state, "QOW", FitStage.TASK_RUN, "N", "bkg", "E0", "U2");
|
||||
//
|
||||
//
|
||||
// res.print(ctx.io.out());
|
||||
}
|
@ -66,8 +66,8 @@ class UnderflowFitter {
|
||||
.map {
|
||||
new WeightedObservedPoint(
|
||||
1d,//1d / p.getValue() , //weight
|
||||
it.getDouble(CHANNEL_KEY), // x
|
||||
it.getDouble(COUNT_RATE_KEY) / binning) //y
|
||||
it.getDouble(CHANNEL_KEY) as double, // x
|
||||
it.getDouble(COUNT_RATE_KEY) / binning as double) //y
|
||||
}
|
||||
.collect(Collectors.toList());
|
||||
SimpleCurveFitter fitter = SimpleCurveFitter.create(new ExponentFunction(), [1d, 200d] as double[])
|
||||
|
@ -15,33 +15,23 @@
|
||||
*/
|
||||
package inr.numass.models;
|
||||
|
||||
import hep.dataforge.context.Global;
|
||||
import hep.dataforge.exceptions.NameNotFoundException;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricFunction;
|
||||
import hep.dataforge.stat.parametric.ParametricFunction;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction;
|
||||
import hep.dataforge.values.ValueProvider;
|
||||
import hep.dataforge.values.Values;
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.analysis.integration.SimpsonIntegrator;
|
||||
import org.apache.commons.math3.analysis.integration.UnivariateIntegrator;
|
||||
|
||||
import static hep.dataforge.names.NamesUtils.combineNamesWithEquals;
|
||||
import static java.lang.Double.isNaN;
|
||||
import static java.lang.Math.*;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Darksnake
|
||||
*/
|
||||
public class GaussResolution extends AbstractParametricFunction implements Transmission {
|
||||
public class GaussResolution extends AbstractParametricBiFunction {
|
||||
|
||||
private static final String[] list = {"w"};
|
||||
private static final String[] list = {"w", "shift"};
|
||||
|
||||
private double cutoff = 4d;
|
||||
private final UnivariateIntegrator integrator = new SimpsonIntegrator(1e-3, Double.MAX_VALUE, 3, 64);
|
||||
// private final UnivariateIntegrator integrator = new SimpsonIntegrator(1e-3, Double.MAX_VALUE, 3, 64);
|
||||
|
||||
/**
|
||||
*
|
||||
* @param cutoff - расстояние в сигмах от среднего значения, на котором
|
||||
* функция считается обращающейся в ноль
|
||||
*/
|
||||
@ -50,100 +40,82 @@ public class GaussResolution extends AbstractParametricFunction implements Trans
|
||||
this.cutoff = cutoff;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String name, double X, Values pars) {
|
||||
if (abs(X - getPos(pars)) > cutoff * getW(pars)) {
|
||||
return 0;
|
||||
}
|
||||
switch (name) {
|
||||
case "pos":
|
||||
return this.value(X, pars) * (X - getPos(pars)) / getW(pars) / getW(pars);
|
||||
case "w":
|
||||
return this.value(X, pars) * ((X - getPos(pars)) * (X - getPos(pars)) / getW(pars) / getW(pars) / getW(pars) - 1 / getW(pars));
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
// @Override
|
||||
// public ParametricFunction getConvolutedSpectrum(final RangedNamedSetSpectrum bare) {
|
||||
// return new AbstractParametricFunction(combineNamesWithEquals(this.namesAsArray(), bare.namesAsArray())) {
|
||||
// int maxEval = Global.instance().getInt("INTEGR_POINTS", 500);
|
||||
//
|
||||
// @Override
|
||||
// public double derivValue(String parName, double x, Values set) {
|
||||
// double a = getLowerBound(set);
|
||||
// double b = getUpperBound(set);
|
||||
// assert b > a;
|
||||
// return integrator.integrate(maxEval, getDerivProduct(parName, bare, set, x), a, b);
|
||||
// }
|
||||
//
|
||||
// @Override
|
||||
// public boolean providesDeriv(String name) {
|
||||
// return "w".equals(name) || bare.providesDeriv(name);
|
||||
// }
|
||||
//
|
||||
// @Override
|
||||
// public double value(double x, Values set) {
|
||||
// double a = getLowerBound(set);
|
||||
// double b = getUpperBound(set);
|
||||
// assert b > a;
|
||||
// return integrator.integrate(maxEval, getProduct(bare, set, x), a, b);
|
||||
// }
|
||||
// };
|
||||
// }
|
||||
|
||||
@Override
|
||||
public ParametricFunction getConvolutedSpectrum(final RangedNamedSetSpectrum bare) {
|
||||
return new AbstractParametricFunction(combineNamesWithEquals(this.namesAsArray(), bare.namesAsArray())) {
|
||||
int maxEval = Global.instance().getInt("INTEGR_POINTS", 500);
|
||||
// @Override
|
||||
// public double getDeriv(String name, Values set, double input, double output) {
|
||||
// return this.derivValue(name, output - input, set);
|
||||
// }
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double x, Values set) {
|
||||
double a = getLowerBound(set);
|
||||
double b = getUpperBound(set);
|
||||
assert b > a;
|
||||
return integrator.integrate(maxEval, getDerivProduct(parName, bare, set, x), a, b);
|
||||
}
|
||||
// private UnivariateFunction getDerivProduct(final String name, final ParametricFunction bare, final Values pars, final double x0) {
|
||||
// return (double x) -> {
|
||||
// double res1;
|
||||
// double res2;
|
||||
// try {
|
||||
// res1 = bare.derivValue(name, x0 - x, pars) * GaussResolution.this.value(x, pars);
|
||||
// } catch (NameNotFoundException ex1) {
|
||||
// res1 = 0;
|
||||
// }
|
||||
// try {
|
||||
// res2 = bare.value(x0 - x, pars) * GaussResolution.this.derivValue(name, x, pars);
|
||||
// } catch (NameNotFoundException ex2) {
|
||||
// res2 = 0;
|
||||
// }
|
||||
// return res1 + res2;
|
||||
// };
|
||||
// }
|
||||
|
||||
@Override
|
||||
public boolean providesDeriv(String name) {
|
||||
if ("w".equals(name)) {
|
||||
return true;
|
||||
}
|
||||
return bare.providesDeriv(name);
|
||||
}
|
||||
// private double getLowerBound(final Values pars) {
|
||||
// return getPos(pars) - cutoff * getW(pars);
|
||||
// }
|
||||
|
||||
@Override
|
||||
public double value(double x, Values set) {
|
||||
double a = getLowerBound(set);
|
||||
double b = getUpperBound(set);
|
||||
assert b > a;
|
||||
return integrator.integrate(maxEval, getProduct(bare, set, x), a, b);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getDeriv(String name, Values set, double input, double output) {
|
||||
return this.derivValue(name, output - input, set);
|
||||
}
|
||||
|
||||
private UnivariateFunction getDerivProduct(final String name, final ParametricFunction bare, final Values pars, final double x0) {
|
||||
return (double x) -> {
|
||||
double res1;
|
||||
double res2;
|
||||
try {
|
||||
res1 = bare.derivValue(name, x0 - x, pars) * GaussResolution.this.value(x, pars);
|
||||
} catch (NameNotFoundException ex1) {
|
||||
res1 = 0;
|
||||
}
|
||||
try {
|
||||
res2 = bare.value(x0 - x, pars) * GaussResolution.this.derivValue(name, x, pars);
|
||||
} catch (NameNotFoundException ex2) {
|
||||
res2 = 0;
|
||||
}
|
||||
return res1 + res2;
|
||||
};
|
||||
}
|
||||
// private UnivariateFunction getProduct(final ParametricFunction bare, final Values pars, final double x0) {
|
||||
// return (double x) -> {
|
||||
// double res = bare.value(x0 - x, pars) * GaussResolution.this.value(x, pars);
|
||||
// assert !isNaN(res);
|
||||
// return res;
|
||||
// };
|
||||
// }
|
||||
|
||||
private double getLowerBound(final Values pars) {
|
||||
return getPos(pars) - cutoff * getW(pars);
|
||||
}
|
||||
// private double getUpperBound(final Values pars) {
|
||||
// return getPos(pars) + cutoff * getW(pars);
|
||||
// }
|
||||
|
||||
// @Override
|
||||
// public double getValue(Values set, double input, double output) {
|
||||
// return this.value(output - input, set);
|
||||
// }
|
||||
|
||||
private double getPos(ValueProvider pars) {
|
||||
// return pars.getDouble("pos");
|
||||
// вряд ли стоит ожидать, что разрешение будет сдвигать среднее, поэтому оставляем один параметр
|
||||
return 0;
|
||||
}
|
||||
|
||||
private UnivariateFunction getProduct(final ParametricFunction bare, final Values pars, final double x0) {
|
||||
return (double x) -> {
|
||||
double res = bare.value(x0 - x, pars) * GaussResolution.this.value(x, pars);
|
||||
assert !isNaN(res);
|
||||
return res;
|
||||
};
|
||||
}
|
||||
|
||||
private double getUpperBound(final Values pars) {
|
||||
return getPos(pars) + cutoff * getW(pars);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getValue(Values set, double input, double output) {
|
||||
return this.value(output - input, set);
|
||||
return pars.getDouble("shift", 0);
|
||||
}
|
||||
|
||||
private double getW(ValueProvider pars) {
|
||||
@ -155,12 +127,33 @@ public class GaussResolution extends AbstractParametricFunction implements Trans
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public double value(double x, Values pars) {
|
||||
if (abs(x - getPos(pars)) > cutoff * getW(pars)) {
|
||||
public double value(double x, double y, Values pars) {
|
||||
double d = x - y;
|
||||
if (abs(d - getPos(pars)) > cutoff * getW(pars)) {
|
||||
return 0;
|
||||
}
|
||||
double aux = (x - getPos(pars)) / getW(pars);
|
||||
double aux = (d - getPos(pars)) / getW(pars);
|
||||
return exp(-aux * aux / 2) / getW(pars) / sqrt(2 * Math.PI);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double x, double y, Values pars) {
|
||||
double d = x - y;
|
||||
if (abs(d - getPos(pars)) > cutoff * getW(pars)) {
|
||||
return 0;
|
||||
}
|
||||
double pos = getPos(pars);
|
||||
double w = getW(pars);
|
||||
|
||||
switch (parName) {
|
||||
case "shift":
|
||||
return this.value(x, y, pars) * (d - pos) / w / w;
|
||||
case "w":
|
||||
return this.value(x, y, pars) * ((d - pos) * (d - pos) / w / w / w - 1 / w);
|
||||
default:
|
||||
return super.derivValue(parName, x, y, pars);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,219 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile;
|
||||
|
||||
import hep.dataforge.exceptions.NotDefinedException;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction;
|
||||
import hep.dataforge.values.Values;
|
||||
|
||||
import static java.lang.Math.*;
|
||||
|
||||
/**
|
||||
* A bi-function for beta-spectrum calculation taking energy and final state as
|
||||
* input.
|
||||
* <p>
|
||||
* dissertation p.33
|
||||
* </p>
|
||||
*
|
||||
* @author <a href="mailto:altavir@gmail.com">Alexander Nozik</a>
|
||||
*/
|
||||
public class NumassBeta extends AbstractParametricBiFunction {
|
||||
|
||||
private static final double K = 1E-23;
|
||||
private static final String[] list = {"E0", "mnu2", "msterile2", "U2"};
|
||||
|
||||
public NumassBeta() {
|
||||
super(list);
|
||||
}
|
||||
|
||||
/**
|
||||
* Beta spectrum derivative
|
||||
*
|
||||
* @param n parameter number
|
||||
* @param E0
|
||||
* @param mnu2
|
||||
* @param E
|
||||
* @return
|
||||
* @throws NotDefinedException
|
||||
*/
|
||||
private double derivRoot(int n, double E0, double mnu2, double E) throws NotDefinedException {
|
||||
double D = E0 - E;//E0-E
|
||||
double res;
|
||||
if (D == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (mnu2 >= 0) {
|
||||
if (E >= (E0 - sqrt(mnu2))) {
|
||||
return 0;
|
||||
}
|
||||
double bare = sqrt(D * D - mnu2);
|
||||
switch (n) {
|
||||
case 0:
|
||||
res = factor(E) * (2 * D * D - mnu2) / bare;
|
||||
break;
|
||||
case 1:
|
||||
res = -factor(E) * 0.5 * D / bare;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
} else {
|
||||
double mu = sqrt(-0.66 * mnu2);
|
||||
if (E >= (E0 + mu)) {
|
||||
return 0;
|
||||
}
|
||||
double root = sqrt(Math.max(D * D - mnu2, 0));
|
||||
double exp = exp(-1 - D / mu);
|
||||
switch (n) {
|
||||
case 0:
|
||||
res = factor(E) * (D * (D + mu * exp) / root + root * (1 - exp));
|
||||
break;
|
||||
case 1:
|
||||
res = factor(E) * (-(D + mu * exp) / root * 0.5 - root * exp * (1 + D / mu) / 3 / mu);
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Derivative of spectrum with sterile neutrinos
|
||||
*
|
||||
* @param name
|
||||
* @param E
|
||||
* @param E0
|
||||
* @param pars
|
||||
* @return
|
||||
* @throws NotDefinedException
|
||||
*/
|
||||
private double derivRootsterile(String name, double E, double E0, Values pars) throws NotDefinedException {
|
||||
double mnu2 = getParameter("mnu2", pars);
|
||||
double mst2 = getParameter("msterile2", pars);
|
||||
double u2 = getParameter("U2", pars);
|
||||
|
||||
switch (name) {
|
||||
case "E0":
|
||||
if (u2 == 0) {
|
||||
return derivRoot(0, E0, mnu2, E);
|
||||
}
|
||||
return u2 * derivRoot(0, E0, mst2, E) + (1 - u2) * derivRoot(0, E0, mnu2, E);
|
||||
case "mnu2":
|
||||
return (1 - u2) * derivRoot(1, E0, mnu2, E);
|
||||
case "msterile2":
|
||||
if (u2 == 0) {
|
||||
return 0;
|
||||
}
|
||||
return u2 * derivRoot(1, E0, mst2, E);
|
||||
case "U2":
|
||||
return root(E0, mst2, E) - root(E0, mnu2, E);
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* The part independent of neutrino mass. Includes global normalization
|
||||
* constant, momentum and Fermi correction
|
||||
*
|
||||
* @param E
|
||||
* @return
|
||||
*/
|
||||
private double factor(double E) {
|
||||
double me = 0.511006E6;
|
||||
double Etot = E + me;
|
||||
double pe = sqrt(E * (E + 2d * me));
|
||||
double ve = pe / Etot;
|
||||
double yfactor = 2d * 2d * 1d / 137.039 * Math.PI;
|
||||
double y = yfactor / ve;
|
||||
double Fn = y / abs(1d - exp(-y));
|
||||
double Fermi = Fn * (1.002037 - 0.001427 * ve);
|
||||
double res = Fermi * pe * Etot;
|
||||
return K * res;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean providesDeriv(String name) {
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Bare beta spectrum with Mainz negative mass correction
|
||||
*
|
||||
* @param E0
|
||||
* @param mnu2
|
||||
* @param E
|
||||
* @return
|
||||
*/
|
||||
private double root(double E0, double mnu2, double E) {
|
||||
/*чистый бета-спектр*/
|
||||
double delta = E0 - E;//E0-E
|
||||
double res;
|
||||
double bare = factor(E) * delta * sqrt(Math.max(delta * delta - mnu2, 0));
|
||||
if (delta == 0) {
|
||||
return 0;
|
||||
}
|
||||
if (mnu2 >= 0) {
|
||||
res = Math.max(bare, 0);
|
||||
} else {
|
||||
if (delta + 0.812 * sqrt(-mnu2) <= 0) {
|
||||
return 0; //sqrt(0.66)
|
||||
}
|
||||
double aux = sqrt(-mnu2 * 0.66) / delta;
|
||||
res = Math.max(bare * (1 + aux * exp(-1 - 1 / aux)), 0);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* beta-spectrum with sterile neutrinos
|
||||
*
|
||||
* @param E
|
||||
* @param E0
|
||||
* @param pars
|
||||
* @return
|
||||
*/
|
||||
private double rootsterile(double E, double E0, Values pars) {
|
||||
double mnu2 = getParameter("mnu2", pars);
|
||||
double mst2 = getParameter("msterile2", pars);
|
||||
double u2 = getParameter("U2", pars);
|
||||
|
||||
if (u2 == 0) {
|
||||
return root(E0, mnu2, E);
|
||||
}
|
||||
return u2 * root(E0, mst2, E) + (1 - u2) * root(E0, mnu2, E);
|
||||
// P(rootsterile)+ (1-P)root
|
||||
}
|
||||
|
||||
@Override
|
||||
protected double getDefaultParameter(String name) {
|
||||
switch (name) {
|
||||
case "mnu2":
|
||||
case "U2":
|
||||
case "msterile2":
|
||||
return 0;
|
||||
default:
|
||||
return super.getDefaultParameter(name);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double fs, double eIn, Values pars) {
|
||||
double E0 = getParameter("E0", pars);
|
||||
return derivRootsterile(parName, eIn, E0 - fs, pars);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(double fs, double eIn, Values pars) {
|
||||
double E0 = getParameter("E0", pars);
|
||||
return rootsterile(eIn, E0 - fs, pars);
|
||||
}
|
||||
|
||||
}
|
@ -1,99 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile;
|
||||
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.maths.MathPlugin;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.models.ResolutionFunction;
|
||||
import inr.numass.utils.ExpressionUtils;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
import static java.lang.Math.sqrt;
|
||||
|
||||
/**
|
||||
* @author <a href="mailto:altavir@gmail.com">Alexander Nozik</a>
|
||||
*/
|
||||
public class NumassResolution extends AbstractParametricBiFunction {
|
||||
|
||||
private static final String[] list = {}; //leaving
|
||||
|
||||
private final double resA;
|
||||
private double resB = 0;
|
||||
private BivariateFunction tailFunction = ResolutionFunction.getConstantTail();
|
||||
|
||||
public NumassResolution(Context context, Meta meta) {
|
||||
super(list);
|
||||
this.resA = meta.getDouble("A", 8.3e-5);
|
||||
this.resB = meta.getDouble("B", 0);
|
||||
if (meta.hasValue("tail")) {
|
||||
String tailFunctionStr = meta.getString("tail");
|
||||
if (tailFunctionStr.startsWith("function::")) {
|
||||
tailFunction = MathPlugin.buildFrom(context).buildBivariateFunction(tailFunctionStr.substring(10));
|
||||
} else {
|
||||
tailFunction = (E, U) -> {
|
||||
Map<String, Object> binding = new HashMap<>();
|
||||
binding.put("E", E);
|
||||
binding.put("U", U);
|
||||
binding.put("D", E - U);
|
||||
return ExpressionUtils.function(tailFunctionStr, binding);
|
||||
};
|
||||
}
|
||||
} else if (meta.hasValue("tailAlpha")) {
|
||||
//add polynomial function here
|
||||
double alpha = meta.getDouble("tailAlpha");
|
||||
double beta = meta.getDouble("tailBeta", 0);
|
||||
tailFunction = (double E, double U) -> 1 - (E - U) * (alpha + E / 1000d * beta) / 1000d;
|
||||
|
||||
} else {
|
||||
tailFunction = ResolutionFunction.getConstantTail();
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double x, double y, Values set) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
private double getValueFast(double E, double U) {
|
||||
double delta = resA * E;
|
||||
if (E - U < 0) {
|
||||
return 0;
|
||||
} else if (E - U > delta) {
|
||||
return tailFunction.value(E, U);
|
||||
} else {
|
||||
return (E - U) / delta;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean providesDeriv(String name) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(double E, double U, Values set) {
|
||||
assert resA > 0;
|
||||
if (resB <= 0) {
|
||||
return this.getValueFast(E, U);
|
||||
}
|
||||
assert resB > 0;
|
||||
double delta = resA * E;
|
||||
if (E - U < 0) {
|
||||
return 0;
|
||||
} else if (E - U > delta) {
|
||||
return tailFunction.value(E, U);
|
||||
} else {
|
||||
return (1 - sqrt(1 - (E - U) / E * resB)) / (1 - sqrt(1 - resA * resB));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -1,114 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile;
|
||||
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.maths.MathPlugin;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.models.LossCalculator;
|
||||
import inr.numass.utils.ExpressionUtils;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* @author <a href="mailto:altavir@gmail.com">Alexander Nozik</a>
|
||||
*/
|
||||
public class NumassTransmission extends AbstractParametricBiFunction {
|
||||
|
||||
private static final String[] list = {"trap", "X"};
|
||||
private static final double ION_POTENTIAL = 15.4;//eV
|
||||
private final LossCalculator calculator;
|
||||
private final BivariateFunction trapFunc;
|
||||
private Map<Double, UnivariateFunction> lossCache = new HashMap<>();
|
||||
|
||||
private final boolean adjustX;
|
||||
|
||||
public NumassTransmission(Context context, Meta meta) {
|
||||
super(list);
|
||||
this.calculator = LossCalculator.instance();
|
||||
adjustX = meta.getBoolean("adjustX", false);
|
||||
if (meta.hasValue("trapping")) {
|
||||
String trapFuncStr = meta.getString("trapping");
|
||||
if (trapFuncStr.startsWith("function::")) {
|
||||
trapFunc = MathPlugin.buildFrom(context).buildBivariateFunction(trapFuncStr.substring(10));
|
||||
} else {
|
||||
trapFunc = (Ei, Ef) -> {
|
||||
Map<String, Object> binding = new HashMap<>();
|
||||
binding.put("Ei", Ei);
|
||||
binding.put("Ef", Ef);
|
||||
return ExpressionUtils.function(trapFuncStr, binding);
|
||||
};
|
||||
}
|
||||
} else {
|
||||
LoggerFactory.getLogger(getClass()).warn("Trapping function not defined. Using default");
|
||||
trapFunc = MathPlugin.buildFrom(context).buildBivariateFunction("numass.trap.nominal");
|
||||
}
|
||||
}
|
||||
|
||||
public double getX(double eIn, Values set) {
|
||||
if (adjustX) {
|
||||
//From our article
|
||||
return set.getDouble("X") * Math.log(eIn / ION_POTENTIAL) * eIn * ION_POTENTIAL / 1.9580741410115568e6;
|
||||
} else {
|
||||
return set.getDouble("X");
|
||||
}
|
||||
}
|
||||
|
||||
public double p0(double eIn, Values set) {
|
||||
return LossCalculator.instance().getLossProbability(0, getX(eIn, set));
|
||||
}
|
||||
|
||||
private BivariateFunction getTrapFunction(Context context, Meta meta) {
|
||||
return MathPlugin.buildFrom(context).buildBivariateFunction(meta);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double eIn, double eOut, Values set) {
|
||||
switch (parName) {
|
||||
case "trap":
|
||||
return trapFunc.value(eIn, eOut);
|
||||
case "X":
|
||||
return calculator.getTotalLossDeriv(getX(eIn, set), eIn, eOut);
|
||||
default:
|
||||
return super.derivValue(parName, eIn, eOut, set);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean providesDeriv(String name) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(double eIn, double eOut, Values set) {
|
||||
//calculate X taking into account its energy dependence
|
||||
double X = getX(eIn, set);
|
||||
// loss part
|
||||
double loss = calculator.getTotalLossValue(X, eIn, eOut);
|
||||
// double loss;
|
||||
//
|
||||
// if(eIn-eOut >= 300){
|
||||
// loss = 0;
|
||||
// } else {
|
||||
// UnivariateFunction lossFunction = this.lossCache.computeIfAbsent(X, theX ->
|
||||
// FunctionCaching.cacheUnivariateFunction(0, 300, 400, x -> calculator.getTotalLossValue(theX, eIn, eIn - x))
|
||||
// );
|
||||
//
|
||||
// loss = lossFunction.value(eIn - eOut);
|
||||
// }
|
||||
|
||||
//trapping part
|
||||
double trap = getParameter("trap", set) * trapFunc.value(eIn, eOut);
|
||||
return loss + trap;
|
||||
}
|
||||
|
||||
}
|
@ -1,222 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile;
|
||||
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.context.Global;
|
||||
import hep.dataforge.description.NodeDef;
|
||||
import hep.dataforge.description.ValueDef;
|
||||
import hep.dataforge.exceptions.NotDefinedException;
|
||||
import hep.dataforge.maths.integration.UnivariateIntegrator;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction;
|
||||
import hep.dataforge.stat.parametric.AbstractParametricFunction;
|
||||
import hep.dataforge.stat.parametric.ParametricBiFunction;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.models.FSS;
|
||||
import inr.numass.utils.NumassIntegrator;
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
|
||||
import static hep.dataforge.values.ValueType.BOOLEAN;
|
||||
|
||||
/**
|
||||
* Compact all-in-one model for sterile neutrino spectrum
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
*/
|
||||
@NodeDef(name = "resolution")
|
||||
@NodeDef(name = "transmission")
|
||||
@ValueDef(name = "fssFile", info = "The name for external FSS file. By default internal FSS file is used")
|
||||
@ValueDef(name = "useFSS", type = {BOOLEAN})
|
||||
public class SterileNeutrinoSpectrum extends AbstractParametricFunction {
|
||||
|
||||
private static final String[] list = {"X", "trap", "E0", "mnu2", "msterile2", "U2"};
|
||||
/**
|
||||
* variables:Eo offset,Ein; parameters: "mnu2", "msterile2", "U2"
|
||||
*/
|
||||
private final ParametricBiFunction source = new NumassBeta();
|
||||
/**
|
||||
* variables:Ein,Eout; parameters: "A"
|
||||
*/
|
||||
private final NumassTransmission transmission;
|
||||
/**
|
||||
* variables:Eout,U; parameters: "X", "trap"
|
||||
*/
|
||||
private final ParametricBiFunction resolution;
|
||||
/**
|
||||
* auxiliary function for trans-res convolution
|
||||
*/
|
||||
private final ParametricBiFunction transRes;
|
||||
private FSS fss;
|
||||
// private boolean useMC;
|
||||
private boolean fast;
|
||||
|
||||
public SterileNeutrinoSpectrum(Context context, Meta configuration) {
|
||||
super(list);
|
||||
if (configuration.getBoolean("useFSS", true)) {
|
||||
InputStream fssStream = configuration.optString("fssFile")
|
||||
.map(fssFile -> {
|
||||
try {
|
||||
return context.getIo().optBinary(fssFile)
|
||||
.orElseThrow(() -> new RuntimeException("Could not locate FSS file"))
|
||||
.getStream();
|
||||
} catch (IOException e) {
|
||||
throw new RuntimeException("Could not load FSS file", e);
|
||||
}
|
||||
})
|
||||
.orElse(getClass().getResourceAsStream("/data/FS.txt"));
|
||||
|
||||
|
||||
fss = new FSS(fssStream);
|
||||
}
|
||||
|
||||
transmission = new NumassTransmission(context, configuration.getMetaOrEmpty("transmission"));
|
||||
resolution = new NumassResolution(context, configuration.getMeta("resolution", Meta.empty()));
|
||||
this.fast = configuration.getBoolean("fast", true);
|
||||
transRes = new TransRes();
|
||||
}
|
||||
|
||||
public SterileNeutrinoSpectrum(Meta configuration) {
|
||||
this(Global.instance(), configuration);
|
||||
}
|
||||
|
||||
public SterileNeutrinoSpectrum() {
|
||||
this(Global.instance(), Meta.empty());
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double u, Values set) {
|
||||
switch (parName) {
|
||||
case "U2":
|
||||
case "msterile2":
|
||||
case "mnu2":
|
||||
case "E0":
|
||||
return integrate(u, source.derivative(parName), transRes, set);
|
||||
case "X":
|
||||
case "trap":
|
||||
return integrate(u, source, transRes.derivative(parName), set);
|
||||
default:
|
||||
throw new NotDefinedException();
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(double u, Values set) {
|
||||
return integrate(u, source, transRes, set);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean providesDeriv(String name) {
|
||||
return source.providesDeriv(name) && transmission.providesDeriv(name) && resolution.providesDeriv(name);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Direct Gauss-Legandre integration
|
||||
*
|
||||
* @param u
|
||||
* @param sourceFunction
|
||||
* @param transResFunction
|
||||
* @param set
|
||||
* @return
|
||||
*/
|
||||
private double integrate(
|
||||
double u,
|
||||
ParametricBiFunction sourceFunction,
|
||||
ParametricBiFunction transResFunction,
|
||||
Values set) {
|
||||
|
||||
double eMax = set.getDouble("E0") + 5d;
|
||||
|
||||
if (u >= eMax) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
UnivariateFunction fsSource;
|
||||
if (fss != null) {
|
||||
fsSource = (eIn) -> {
|
||||
double res = 0;
|
||||
for (int i = 0; i < fss.size(); i++) {
|
||||
res += fss.getP(i) * sourceFunction.value(fss.getE(i), eIn, set);
|
||||
}
|
||||
return res;
|
||||
};
|
||||
} else {
|
||||
fsSource = (eIn) -> sourceFunction.value(0, eIn, set);
|
||||
}
|
||||
|
||||
UnivariateIntegrator integrator;
|
||||
if (fast) {
|
||||
if (eMax - u < 300) {
|
||||
integrator = NumassIntegrator.getFastInterator();
|
||||
} else if (eMax - u > 2000) {
|
||||
integrator = NumassIntegrator.getHighDensityIntegrator();
|
||||
} else {
|
||||
integrator = NumassIntegrator.getDefaultIntegrator();
|
||||
}
|
||||
|
||||
} else {
|
||||
integrator = NumassIntegrator.getHighDensityIntegrator();
|
||||
}
|
||||
|
||||
return integrator.integrate(u, eMax, eIn -> fsSource.value(eIn) * transResFunction.value(eIn, u, set));
|
||||
}
|
||||
|
||||
private class TransRes extends AbstractParametricBiFunction {
|
||||
|
||||
public TransRes() {
|
||||
super(new String[]{"X", "trap"});
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean providesDeriv(String name) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double derivValue(String parName, double eIn, double u, Values set) {
|
||||
switch (parName) {
|
||||
case "X":
|
||||
//TODO implement p0 derivative
|
||||
throw new NotDefinedException();
|
||||
case "trap":
|
||||
return lossRes(transmission.derivative(parName), eIn, u, set);
|
||||
default:
|
||||
return super.derivValue(parName, eIn, u, set);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(double eIn, double u, Values set) {
|
||||
|
||||
double p0 = transmission.p0(eIn, set);
|
||||
return p0 * resolution.value(eIn, u, set) + lossRes(transmission, eIn, u, set);
|
||||
}
|
||||
|
||||
private double lossRes(ParametricBiFunction transFunc, double eIn, double u, Values set) {
|
||||
UnivariateFunction integrand = (eOut) -> transFunc.value(eIn, eOut, set) * resolution.value(eOut, u, set);
|
||||
|
||||
double border = u + 30;
|
||||
double firstPart = NumassIntegrator.getFastInterator().integrate(u, Math.min(eIn, border), integrand);
|
||||
double secondPart;
|
||||
if (eIn > border) {
|
||||
if (fast) {
|
||||
secondPart = NumassIntegrator.getDefaultIntegrator().integrate(border, eIn, integrand);
|
||||
} else {
|
||||
secondPart = NumassIntegrator.getHighDensityIntegrator().integrate(border, eIn, integrand);
|
||||
}
|
||||
} else {
|
||||
secondPart = 0;
|
||||
}
|
||||
return firstPart + secondPart;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -1,99 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile;
|
||||
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.maths.MathPlugin;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.meta.MetaBuilder;
|
||||
import hep.dataforge.stat.fit.ParamSet;
|
||||
import hep.dataforge.stat.parametric.ParametricFunction;
|
||||
import inr.numass.Numass;
|
||||
import inr.numass.models.*;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
*/
|
||||
public class TestModels {
|
||||
|
||||
/**
|
||||
* @param args the command line arguments
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Context context = Numass.buildContext();
|
||||
/*
|
||||
<model modelName="sterile" fssFile="FS.txt">
|
||||
<resolution width = "1.22e-4" tailAlpha="1e-2"/>
|
||||
<transmission trapping="numass.trap2016"/>
|
||||
</model>
|
||||
*/
|
||||
Meta meta = new MetaBuilder("model")
|
||||
.putNode(new MetaBuilder("resolution")
|
||||
.putValue("width", 1.22e-4)
|
||||
.putValue("tailAlpha", 1e-2)
|
||||
)
|
||||
.putNode(new MetaBuilder("transmission")
|
||||
.putValue("trapping", "numass.trap2016")
|
||||
);
|
||||
ParametricFunction oldFunc = oldModel(context, meta);
|
||||
ParametricFunction newFunc = newModel(context, meta);
|
||||
|
||||
ParamSet allPars = new ParamSet()
|
||||
.setPar("N", 7e+05, 1.8e+03, 0d, Double.POSITIVE_INFINITY)
|
||||
.setPar("bkg", 1d, 0.050)
|
||||
.setPar("E0", 18575d, 1.4)
|
||||
.setPar("mnu2", 0d, 1d)
|
||||
.setPar("msterile2", 1000d * 1000d, 0)
|
||||
.setPar("U2", 0.0, 1e-4, -1d, 1d)
|
||||
.setPar("X", 0.04, 0.01, 0d, Double.POSITIVE_INFINITY)
|
||||
.setPar("trap", 1, 0.01, 0d, Double.POSITIVE_INFINITY);
|
||||
|
||||
for (double u = 14000; u < 18600; u += 100) {
|
||||
// double oldVal = oldFunc.value(u, allPars);
|
||||
// double newVal = newFunc.value(u, allPars);
|
||||
double oldVal = oldFunc.derivValue("trap", u, allPars);
|
||||
double newVal = newFunc.derivValue("trap", u, allPars);
|
||||
System.out.printf("%f\t%g\t%g\t%g%n", u, oldVal, newVal, 1d - oldVal / newVal);
|
||||
}
|
||||
}
|
||||
|
||||
@SuppressWarnings("deprecation")
|
||||
private static ParametricFunction oldModel(Context context, Meta meta) {
|
||||
double A = meta.getDouble("resolution", meta.getDouble("resolution.width", 8.3e-5));//8.3e-5
|
||||
double from = meta.getDouble("from", 13900d);
|
||||
double to = meta.getDouble("to", 18700d);
|
||||
context.getChronicle().report("Setting up tritium model with real transmission function");
|
||||
BivariateFunction resolutionTail;
|
||||
if (meta.hasValue("resolution.tailAlpha")) {
|
||||
resolutionTail = ResolutionFunction.getAngledTail(meta.getDouble("resolution.tailAlpha"), meta.getDouble("resolution.tailBeta", 0));
|
||||
} else {
|
||||
resolutionTail = ResolutionFunction.getRealTail();
|
||||
}
|
||||
//RangedNamedSetSpectrum beta = new BetaSpectrum(context.io().getFile("FS.txt"));
|
||||
RangedNamedSetSpectrum beta = new BetaSpectrum();
|
||||
ModularSpectrum sp = new ModularSpectrum(beta, new ResolutionFunction(A, resolutionTail), from, to);
|
||||
if (meta.getBoolean("caching", false)) {
|
||||
context.getChronicle().report("Caching turned on");
|
||||
sp.setCaching(true);
|
||||
}
|
||||
//Adding trapping energy dependence
|
||||
|
||||
if (meta.hasValue("transmission.trapping")) {
|
||||
BivariateFunction trap = MathPlugin.buildFrom(context).buildBivariateFunction(meta.getString("transmission.trapping"));
|
||||
sp.setTrappingFunction(trap);
|
||||
}
|
||||
|
||||
return new NBkgSpectrum(sp);
|
||||
}
|
||||
|
||||
private static ParametricFunction newModel(Context context, Meta meta) {
|
||||
SterileNeutrinoSpectrum sp = new SterileNeutrinoSpectrum(context, meta);
|
||||
return new NBkgSpectrum(sp);
|
||||
}
|
||||
|
||||
}
|
@ -31,7 +31,7 @@ public class DataModelUtils {
|
||||
|
||||
public static Table getUniformSpectrumConfiguration(double from, double to, double time, int numpoints) {
|
||||
assert to != from;
|
||||
final String[] list = {SpectrumDataAdapter.X_VALUE_KEY, "time"};
|
||||
final String[] list = {SpectrumDataAdapter.X_AXIS, "time"};
|
||||
ListTable.Builder res = new ListTable.Builder(list);
|
||||
|
||||
for (int i = 0; i < numpoints; i++) {
|
||||
@ -45,7 +45,7 @@ public class DataModelUtils {
|
||||
}
|
||||
|
||||
public static Table getSpectrumConfigurationFromResource(String resource) {
|
||||
final String[] list = {"x", "time"};
|
||||
final String[] list = {SpectrumDataAdapter.X_AXIS, "time"};
|
||||
ListTable.Builder res = new ListTable.Builder(list);
|
||||
Scanner scan = new Scanner(DataModelUtils.class.getResourceAsStream(resource));
|
||||
while (scan.hasNextLine()) {
|
||||
|
@ -20,7 +20,7 @@ public class NumassIntegrator {
|
||||
private static UnivariateIntegrator defaultIntegrator;
|
||||
private static UnivariateIntegrator highDensityIntegrator;
|
||||
|
||||
public synchronized static UnivariateIntegrator getFastInterator() {
|
||||
public synchronized static UnivariateIntegrator<?> getFastInterator() {
|
||||
if (fastInterator == null) {
|
||||
LoggerFactory.getLogger(NumassIntegrator.class).debug("Creating fast integrator");
|
||||
fastInterator = new GaussRuleIntegrator((int) (mult * 100));
|
||||
@ -28,7 +28,7 @@ public class NumassIntegrator {
|
||||
return fastInterator;
|
||||
}
|
||||
|
||||
public synchronized static UnivariateIntegrator getDefaultIntegrator() {
|
||||
public synchronized static UnivariateIntegrator<?> getDefaultIntegrator() {
|
||||
if (defaultIntegrator == null) {
|
||||
LoggerFactory.getLogger(NumassIntegrator.class).debug("Creating default integrator");
|
||||
defaultIntegrator = new GaussRuleIntegrator((int) (mult * 300));
|
||||
@ -36,12 +36,11 @@ public class NumassIntegrator {
|
||||
return defaultIntegrator;
|
||||
}
|
||||
|
||||
public synchronized static UnivariateIntegrator getHighDensityIntegrator() {
|
||||
public synchronized static UnivariateIntegrator<?> getHighDensityIntegrator() {
|
||||
if (highDensityIntegrator == null) {
|
||||
LoggerFactory.getLogger(NumassIntegrator.class).debug("Creating high precision integrator");
|
||||
highDensityIntegrator = new GaussRuleIntegrator((int) (mult * 500));
|
||||
}
|
||||
return highDensityIntegrator;
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -35,6 +35,7 @@ import hep.dataforge.values.Values
|
||||
import inr.numass.data.api.NumassAnalyzer
|
||||
import inr.numass.data.api.NumassPoint
|
||||
import inr.numass.data.api.NumassSet
|
||||
import inr.numass.models.FSS
|
||||
import inr.numass.utils.ExpressionUtils
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction
|
||||
import org.jfree.chart.plot.IntervalMarker
|
||||
@ -43,6 +44,7 @@ import tornadofx.*
|
||||
import java.awt.Color
|
||||
import java.awt.Font
|
||||
import java.io.IOException
|
||||
import java.io.InputStream
|
||||
import java.io.OutputStream
|
||||
import java.lang.Math.*
|
||||
import java.util.*
|
||||
@ -160,6 +162,26 @@ object NumassUtils {
|
||||
|
||||
}
|
||||
|
||||
fun getFSS(context: Context, meta: Meta): FSS? {
|
||||
return if (meta.getBoolean("useFSS", true)) {
|
||||
val fssStream = meta.optString("fssFile")
|
||||
.map<InputStream> { fssFile ->
|
||||
try {
|
||||
context.io.optBinary(fssFile)
|
||||
.orElseThrow({ RuntimeException("Could not locate FSS file") })
|
||||
.stream
|
||||
} catch (e: IOException) {
|
||||
throw RuntimeException("Could not load FSS file", e)
|
||||
}
|
||||
}
|
||||
.orElse(context.io.optResource("data/FS.txt").get().stream)
|
||||
FSS(fssStream)
|
||||
} else {
|
||||
null
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Evaluate groovy expression using numass point as parameter
|
||||
*
|
||||
@ -200,7 +222,7 @@ fun addSetMarkers(frame: JFreeChartFrame, sets: Collection<NumassSet>) {
|
||||
/**
|
||||
* Subtract one energy spectrum from the other one
|
||||
*/
|
||||
fun subtract(context: Context, merge: Table, empty: Table): Table {
|
||||
fun subtractAmplitudeSpectrum(context: Context, merge: Table, empty: Table): Table {
|
||||
val builder = ListTable.Builder(merge.format)
|
||||
merge.rows.forEach { point ->
|
||||
val pointBuilder = ValueMap.Builder(point)
|
||||
|
@ -1,11 +1,125 @@
|
||||
package inr.numass.models
|
||||
|
||||
import hep.dataforge.maths.integration.UnivariateIntegrator
|
||||
import hep.dataforge.names.Names
|
||||
import hep.dataforge.stat.models.Model
|
||||
import hep.dataforge.stat.models.ModelDescriptor
|
||||
import hep.dataforge.stat.models.ModelFactory
|
||||
import hep.dataforge.stat.parametric.AbstractParametricFunction
|
||||
import hep.dataforge.stat.parametric.ParametricFunction
|
||||
import hep.dataforge.utils.ContextMetaFactory
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.utils.NumassIntegrator
|
||||
import java.util.stream.Stream
|
||||
|
||||
|
||||
fun model(name: String, descriptor: ModelDescriptor? = null, factory: ContextMetaFactory<Model>): ModelFactory {
|
||||
return ModelFactory.build(name, descriptor, factory);
|
||||
}
|
||||
|
||||
// spectra operations
|
||||
//TODO move to stat
|
||||
|
||||
/**
|
||||
* Calculate sum of two parametric functions
|
||||
*/
|
||||
operator fun ParametricFunction.plus(func: ParametricFunction): ParametricFunction {
|
||||
val mergedNames = Names.of(Stream.concat(names.stream(), func.names.stream()).distinct())
|
||||
return object : AbstractParametricFunction(mergedNames) {
|
||||
override fun derivValue(parName: String, x: Double, set: Values): Double {
|
||||
return func.derivValue(parName, x, set) + this@plus.derivValue(parName, x, set)
|
||||
}
|
||||
|
||||
override fun value(x: Double, set: Values): Double {
|
||||
return this@plus.value(x, set) + func.value(x, set)
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return this@plus.providesDeriv(name) && func.providesDeriv(name)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
operator fun ParametricFunction.minus(func: ParametricFunction): ParametricFunction {
|
||||
val mergedNames = Names.of(Stream.concat(names.stream(), func.names.stream()).distinct())
|
||||
return object : AbstractParametricFunction(mergedNames) {
|
||||
override fun derivValue(parName: String, x: Double, set: Values): Double {
|
||||
return func.derivValue(parName, x, set) - this@minus.derivValue(parName, x, set)
|
||||
}
|
||||
|
||||
override fun value(x: Double, set: Values): Double {
|
||||
return this@minus.value(x, set) - func.value(x, set)
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return this@minus.providesDeriv(name) && func.providesDeriv(name)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate product of two parametric functions
|
||||
*
|
||||
*/
|
||||
operator fun ParametricFunction.times(func: ParametricFunction): ParametricFunction {
|
||||
val mergedNames = Names.of(Stream.concat(names.stream(), func.names.stream()).distinct())
|
||||
return object : AbstractParametricFunction(mergedNames) {
|
||||
override fun derivValue(parName: String, x: Double, set: Values): Double {
|
||||
return this@times.value(x, set) * func.derivValue(parName, x, set) + this@times.derivValue(parName, x, set) * func.value(x, set)
|
||||
}
|
||||
|
||||
override fun value(x: Double, set: Values): Double {
|
||||
return this@times.value(x, set) * func.value(x, set)
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return this@times.providesDeriv(name) && func.providesDeriv(name)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply parametric function by fixed value
|
||||
*/
|
||||
operator fun ParametricFunction.times(num: Number): ParametricFunction {
|
||||
return object : AbstractParametricFunction(names) {
|
||||
override fun derivValue(parName: String, x: Double, set: Values): Double {
|
||||
return this@times.value(x, set) * num.toDouble()
|
||||
}
|
||||
|
||||
override fun value(x: Double, set: Values): Double {
|
||||
return this@times.value(x, set) * num.toDouble()
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return this@times.providesDeriv(name)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate convolution of two parametric functions
|
||||
*/
|
||||
fun ParametricFunction.convolute(func: ParametricFunction,
|
||||
integrator: UnivariateIntegrator<*> = NumassIntegrator.getDefaultIntegrator()): ParametricFunction {
|
||||
val mergedNames = Names.of(Stream.concat(names.stream(), func.names.stream()).distinct())
|
||||
return object : AbstractParametricFunction(mergedNames){
|
||||
override fun derivValue(parName: String, x: Double, set: Values): Double {
|
||||
TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
|
||||
}
|
||||
|
||||
override fun value(x: Double, set: Values): Double {
|
||||
TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String?): Boolean {
|
||||
return this@convolute.providesDeriv(name) && func.providesDeriv(name)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,230 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile
|
||||
|
||||
import hep.dataforge.exceptions.NotDefinedException
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction
|
||||
import hep.dataforge.stat.parametric.AbstractParametricFunction
|
||||
import hep.dataforge.stat.parametric.ParametricFunction
|
||||
import hep.dataforge.values.Values
|
||||
|
||||
import java.lang.Math.*
|
||||
|
||||
/**
|
||||
* A bi-function for beta-spectrum calculation taking energy and final state as
|
||||
* input.
|
||||
*
|
||||
*
|
||||
* dissertation p.33
|
||||
*
|
||||
*
|
||||
* @author [Alexander Nozik](mailto:altavir@gmail.com)
|
||||
*/
|
||||
class NumassBeta : AbstractParametricBiFunction(list) {
|
||||
|
||||
/**
|
||||
* Beta spectrum derivative
|
||||
*
|
||||
* @param n parameter number
|
||||
* @param E0
|
||||
* @param mnu2
|
||||
* @param E
|
||||
* @return
|
||||
* @throws NotDefinedException
|
||||
*/
|
||||
@Throws(NotDefinedException::class)
|
||||
private fun derivRoot(n: Int, E0: Double, mnu2: Double, E: Double): Double {
|
||||
val D = E0 - E//E0-E
|
||||
if (D == 0.0) {
|
||||
return 0.0
|
||||
}
|
||||
|
||||
return if (mnu2 >= 0) {
|
||||
if (E >= E0 - sqrt(mnu2)) {
|
||||
0.0
|
||||
} else {
|
||||
val bare = sqrt(D * D - mnu2)
|
||||
when (n) {
|
||||
0 -> factor(E) * (2.0 * D * D - mnu2) / bare
|
||||
1 -> -factor(E) * 0.5 * D / bare
|
||||
else -> 0.0
|
||||
}
|
||||
}
|
||||
} else {
|
||||
val mu = sqrt(-0.66 * mnu2)
|
||||
if (E >= E0 + mu) {
|
||||
0.0
|
||||
} else {
|
||||
val root = sqrt(Math.max(D * D - mnu2, 0.0))
|
||||
val exp = exp(-1 - D / mu)
|
||||
when (n) {
|
||||
0 -> factor(E) * (D * (D + mu * exp) / root + root * (1 - exp))
|
||||
1 -> factor(E) * (-(D + mu * exp) / root * 0.5 - root * exp * (1 + D / mu) / 3.0 / mu)
|
||||
else -> 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Derivative of spectrum with sterile neutrinos
|
||||
*
|
||||
* @param name
|
||||
* @param E
|
||||
* @param E0
|
||||
* @param pars
|
||||
* @return
|
||||
* @throws NotDefinedException
|
||||
*/
|
||||
@Throws(NotDefinedException::class)
|
||||
private fun derivRootsterile(name: String, E: Double, E0: Double, pars: Values): Double {
|
||||
val mnu2 = getParameter("mnu2", pars)
|
||||
val mst2 = getParameter("msterile2", pars)
|
||||
val u2 = getParameter("U2", pars)
|
||||
|
||||
return when (name) {
|
||||
"E0" -> {
|
||||
if (u2 == 0.0) {
|
||||
derivRoot(0, E0, mnu2, E)
|
||||
} else {
|
||||
u2 * derivRoot(0, E0, mst2, E) + (1 - u2) * derivRoot(0, E0, mnu2, E)
|
||||
}
|
||||
}
|
||||
"mnu2" -> (1 - u2) * derivRoot(1, E0, mnu2, E)
|
||||
"msterile2" -> {
|
||||
if (u2 == 0.0) {
|
||||
0.0
|
||||
} else {
|
||||
u2 * derivRoot(1, E0, mst2, E)
|
||||
}
|
||||
}
|
||||
"U2" -> root(E0, mst2, E) - root(E0, mnu2, E)
|
||||
else -> 0.0
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* The part independent of neutrino mass. Includes global normalization
|
||||
* constant, momentum and Fermi correction
|
||||
*
|
||||
* @param E
|
||||
* @return
|
||||
*/
|
||||
private fun factor(E: Double): Double {
|
||||
val me = 0.511006E6
|
||||
val eTot = E + me
|
||||
val pe = sqrt(E * (E + 2.0 * me))
|
||||
val ve = pe / eTot
|
||||
val yfactor = 2.0 * 2.0 * 1.0 / 137.039 * Math.PI
|
||||
val y = yfactor / ve
|
||||
val Fn = y / abs(1.0 - exp(-y))
|
||||
val Fermi = Fn * (1.002037 - 0.001427 * ve)
|
||||
val res = Fermi * pe * eTot
|
||||
return K * res
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return true
|
||||
}
|
||||
|
||||
/**
|
||||
* Bare beta spectrum with Mainz negative mass correction
|
||||
*
|
||||
* @param E0
|
||||
* @param mnu2
|
||||
* @param E
|
||||
* @return
|
||||
*/
|
||||
private fun root(E0: Double, mnu2: Double, E: Double): Double {
|
||||
//bare beta-spectrum
|
||||
val delta = E0 - E//E0-E
|
||||
val res: Double
|
||||
val bare = factor(E) * delta * sqrt(Math.max(delta * delta - mnu2, 0.0))
|
||||
if (delta == 0.0) {
|
||||
return 0.0
|
||||
}
|
||||
if (mnu2 >= 0) {
|
||||
res = Math.max(bare, 0.0)
|
||||
} else {
|
||||
if (delta + 0.812 * sqrt(-mnu2) <= 0) {
|
||||
return 0.0 //sqrt(0.66)
|
||||
}
|
||||
val aux = sqrt(-mnu2 * 0.66) / delta
|
||||
res = Math.max(bare * (1 + aux * exp(-1 - 1 / aux)), 0.0)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
/**
|
||||
* beta-spectrum with sterile neutrinos
|
||||
*
|
||||
* @param E
|
||||
* @param E0
|
||||
* @param pars
|
||||
* @return
|
||||
*/
|
||||
private fun rootsterile(E: Double, E0: Double, pars: Values): Double {
|
||||
val mnu2 = getParameter("mnu2", pars)
|
||||
val mst2 = getParameter("msterile2", pars)
|
||||
val u2 = getParameter("U2", pars)
|
||||
|
||||
return if (u2 == 0.0) {
|
||||
root(E0, mnu2, E)
|
||||
} else {
|
||||
u2 * root(E0, mst2, E) + (1 - u2) * root(E0, mnu2, E)
|
||||
}
|
||||
// P(rootsterile)+ (1-P)root
|
||||
}
|
||||
|
||||
override fun getDefaultParameter(name: String): Double {
|
||||
when (name) {
|
||||
"mnu2", "U2", "msterile2" -> return 0.0
|
||||
else -> return super.getDefaultParameter(name)
|
||||
}
|
||||
}
|
||||
|
||||
override fun derivValue(parName: String, fs: Double, eIn: Double, pars: Values): Double {
|
||||
val e0 = getParameter("E0", pars)
|
||||
return derivRootsterile(parName, eIn, e0 - fs, pars)
|
||||
}
|
||||
|
||||
override fun value(fs: Double, eIn: Double, pars: Values): Double {
|
||||
val e0 = getParameter("E0", pars)
|
||||
return rootsterile(eIn, e0 - fs, pars)
|
||||
}
|
||||
|
||||
/**
|
||||
* Get univariate spectrum with given final state
|
||||
*/
|
||||
fun getSpectrum(fs: Double = 0.0): ParametricFunction {
|
||||
return BetaSpectrum(fs);
|
||||
}
|
||||
|
||||
inner class BetaSpectrum(val fs: Double) : AbstractParametricFunction(list) {
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return this@NumassBeta.providesDeriv(name)
|
||||
}
|
||||
|
||||
override fun derivValue(parName: String, x: Double, set: Values): Double {
|
||||
return this@NumassBeta.derivValue(parName, fs, x, set)
|
||||
}
|
||||
|
||||
override fun value(x: Double, set: Values): Double {
|
||||
return this@NumassBeta.value(fs, x, set)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
companion object {
|
||||
|
||||
private val K = 1E-23
|
||||
private val list = arrayOf("E0", "mnu2", "msterile2", "U2")
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,91 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile
|
||||
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.maths.MathPlugin
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.models.ResolutionFunction
|
||||
import inr.numass.utils.ExpressionUtils
|
||||
import org.apache.commons.math3.analysis.BivariateFunction
|
||||
import java.lang.Math.sqrt
|
||||
import java.util.*
|
||||
|
||||
/**
|
||||
* @author [Alexander Nozik](mailto:altavir@gmail.com)
|
||||
*/
|
||||
class NumassResolution(context: Context, meta: Meta) : AbstractParametricBiFunction(list) {
|
||||
|
||||
private val resA: Double = meta.getDouble("A", 8.3e-5)
|
||||
private val resB = meta.getDouble("B", 0.0)
|
||||
private val tailFunction: BivariateFunction = when {
|
||||
meta.hasValue("tail") -> {
|
||||
val tailFunctionStr = meta.getString("tail")
|
||||
if (tailFunctionStr.startsWith("function::")) {
|
||||
MathPlugin.buildFrom(context).buildBivariateFunction(tailFunctionStr.substring(10))
|
||||
} else {
|
||||
BivariateFunction { E, U ->
|
||||
val binding = HashMap<String, Any>()
|
||||
binding.put("E", E)
|
||||
binding.put("U", U)
|
||||
binding.put("D", E - U)
|
||||
ExpressionUtils.function(tailFunctionStr, binding)
|
||||
}
|
||||
}
|
||||
}
|
||||
meta.hasValue("tailAlpha") -> {
|
||||
//add polynomial function here
|
||||
val alpha = meta.getDouble("tailAlpha")!!
|
||||
val beta = meta.getDouble("tailBeta", 0.0)!!
|
||||
BivariateFunction { E: Double, U: Double -> 1 - (E - U) * (alpha + E / 1000.0 * beta) / 1000.0 }
|
||||
|
||||
}
|
||||
else -> ResolutionFunction.getConstantTail()
|
||||
}
|
||||
|
||||
override fun derivValue(parName: String, x: Double, y: Double, set: Values): Double {
|
||||
return 0.0
|
||||
}
|
||||
|
||||
private fun getValueFast(E: Double, U: Double): Double {
|
||||
val delta = resA * E
|
||||
return if (E - U < 0) {
|
||||
0.0
|
||||
} else if (E - U > delta) {
|
||||
tailFunction.value(E, U)
|
||||
} else {
|
||||
(E - U) / delta
|
||||
}
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return true
|
||||
}
|
||||
|
||||
override fun value(E: Double, U: Double, set: Values): Double {
|
||||
assert(resA > 0)
|
||||
if (resB <= 0) {
|
||||
return this.getValueFast(E, U)
|
||||
}
|
||||
assert(resB > 0)
|
||||
val delta = resA * E
|
||||
return if (E - U < 0) {
|
||||
0.0
|
||||
} else if (E - U > delta) {
|
||||
tailFunction.value(E, U)
|
||||
} else {
|
||||
(1 - sqrt(1 - (E - U) / E * resB)) / (1 - sqrt(1 - resA * resB))
|
||||
}
|
||||
}
|
||||
|
||||
companion object {
|
||||
|
||||
private val list = arrayOf<String>() //leaving
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,105 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile
|
||||
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.maths.MathPlugin
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.models.LossCalculator
|
||||
import inr.numass.utils.ExpressionUtils
|
||||
import org.apache.commons.math3.analysis.BivariateFunction
|
||||
import org.slf4j.LoggerFactory
|
||||
import java.util.*
|
||||
|
||||
/**
|
||||
* @author [Alexander Nozik](mailto:altavir@gmail.com)
|
||||
*/
|
||||
class NumassTransmission(context: Context, meta: Meta) : AbstractParametricBiFunction(list) {
|
||||
private val calculator: LossCalculator = LossCalculator.instance()
|
||||
private val trapFunc: BivariateFunction
|
||||
//private val lossCache = HashMap<Double, UnivariateFunction>()
|
||||
|
||||
private val adjustX: Boolean = meta.getBoolean("adjustX", false)!!
|
||||
|
||||
init {
|
||||
if (meta.hasValue("trapping")) {
|
||||
val trapFuncStr = meta.getString("trapping")
|
||||
trapFunc = if (trapFuncStr.startsWith("function::")) {
|
||||
MathPlugin.buildFrom(context).buildBivariateFunction(trapFuncStr.substring(10))
|
||||
} else {
|
||||
BivariateFunction { Ei: Double, Ef: Double ->
|
||||
val binding = HashMap<String, Any>()
|
||||
binding.put("Ei", Ei)
|
||||
binding.put("Ef", Ef)
|
||||
ExpressionUtils.function(trapFuncStr, binding)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LoggerFactory.getLogger(javaClass).warn("Trapping function not defined. Using default")
|
||||
trapFunc = MathPlugin.buildFrom(context).buildBivariateFunction("numass.trap.nominal")
|
||||
}
|
||||
}
|
||||
|
||||
fun getX(eIn: Double, set: Values): Double {
|
||||
return if (adjustX) {
|
||||
//From our article
|
||||
set.getDouble("X") * Math.log(eIn / ION_POTENTIAL) * eIn * ION_POTENTIAL / 1.9580741410115568e6
|
||||
} else {
|
||||
set.getDouble("X")
|
||||
}
|
||||
}
|
||||
|
||||
fun p0(eIn: Double, set: Values): Double {
|
||||
return LossCalculator.instance().getLossProbability(0, getX(eIn, set))
|
||||
}
|
||||
|
||||
private fun getTrapFunction(context: Context, meta: Meta): BivariateFunction {
|
||||
return MathPlugin.buildFrom(context).buildBivariateFunction(meta)
|
||||
}
|
||||
|
||||
override fun derivValue(parName: String, eIn: Double, eOut: Double, set: Values): Double {
|
||||
return when (parName) {
|
||||
"trap" -> trapFunc.value(eIn, eOut)
|
||||
"X" -> calculator.getTotalLossDeriv(getX(eIn, set), eIn, eOut)
|
||||
else -> super.derivValue(parName, eIn, eOut, set)
|
||||
}
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return true
|
||||
}
|
||||
|
||||
override fun value(eIn: Double, eOut: Double, set: Values): Double {
|
||||
//calculate X taking into account its energy dependence
|
||||
val X = getX(eIn, set)
|
||||
// loss part
|
||||
val loss = calculator.getTotalLossValue(X, eIn, eOut)
|
||||
// double loss;
|
||||
//
|
||||
// if(eIn-eOut >= 300){
|
||||
// loss = 0;
|
||||
// } else {
|
||||
// UnivariateFunction lossFunction = this.lossCache.computeIfAbsent(X, theX ->
|
||||
// FunctionCaching.cacheUnivariateFunction(0, 300, 400, x -> calculator.getTotalLossValue(theX, eIn, eIn - x))
|
||||
// );
|
||||
//
|
||||
// loss = lossFunction.value(eIn - eOut);
|
||||
// }
|
||||
|
||||
//trapping part
|
||||
val trap = getParameter("trap", set) * trapFunc.value(eIn, eOut)
|
||||
return loss + trap
|
||||
}
|
||||
|
||||
companion object {
|
||||
|
||||
private val list = arrayOf("trap", "X")
|
||||
private val ION_POTENTIAL = 15.4//eV
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,164 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile
|
||||
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.description.NodeDef
|
||||
import hep.dataforge.description.NodeDefs
|
||||
import hep.dataforge.description.ValueDef
|
||||
import hep.dataforge.description.ValueDefs
|
||||
import hep.dataforge.exceptions.NotDefinedException
|
||||
import hep.dataforge.maths.integration.UnivariateIntegrator
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.stat.parametric.AbstractParametricBiFunction
|
||||
import hep.dataforge.stat.parametric.AbstractParametricFunction
|
||||
import hep.dataforge.stat.parametric.ParametricBiFunction
|
||||
import hep.dataforge.values.ValueType.BOOLEAN
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.models.FSS
|
||||
import inr.numass.utils.NumassIntegrator
|
||||
|
||||
/**
|
||||
* Compact all-in-one model for sterile neutrino spectrum
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
*/
|
||||
@NodeDefs(
|
||||
NodeDef(name = "resolution"),
|
||||
NodeDef(name = "transmission")
|
||||
)
|
||||
@ValueDefs(
|
||||
ValueDef(name = "fssFile", info = "The name for external FSS file. By default internal FSS file is used"),
|
||||
ValueDef(name = "useFSS", type = arrayOf(BOOLEAN))
|
||||
)
|
||||
|
||||
/**
|
||||
* @param source variables:Eo offset,Ein; parameters: "mnu2", "msterile2", "U2"
|
||||
* @param transmission variables:Ein,Eout; parameters: "A"
|
||||
* @param resolution variables:Eout,U; parameters: "X", "trap"
|
||||
*/
|
||||
|
||||
class SterileNeutrinoSpectrum @JvmOverloads constructor(
|
||||
context: Context,
|
||||
configuration: Meta,
|
||||
val source: ParametricBiFunction = NumassBeta(),
|
||||
val transmission: NumassTransmission = NumassTransmission(context, configuration.getMetaOrEmpty("transmission")),
|
||||
val resolution: ParametricBiFunction = NumassResolution(context, configuration.getMeta("resolution", Meta.empty()))) : AbstractParametricFunction(list) {
|
||||
|
||||
|
||||
/**
|
||||
* auxiliary function for trans-res convolution
|
||||
*/
|
||||
private val transRes: ParametricBiFunction = TransRes()
|
||||
private val fss: FSS? = getFSS(context, configuration)
|
||||
// private boolean useMC;
|
||||
private val fast: Boolean = configuration.getBoolean("fast", true)
|
||||
|
||||
override fun derivValue(parName: String, u: Double, set: Values): Double {
|
||||
return when (parName) {
|
||||
"U2", "msterile2", "mnu2", "E0" -> integrate(u, source.derivative(parName), transRes, set)
|
||||
"X", "trap" -> integrate(u, source, transRes.derivative(parName), set)
|
||||
else -> throw NotDefinedException()
|
||||
}
|
||||
}
|
||||
|
||||
override fun value(u: Double, set: Values): Double {
|
||||
return integrate(u, source, transRes, set)
|
||||
}
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return source.providesDeriv(name) && transmission.providesDeriv(name) && resolution.providesDeriv(name)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Direct Gauss-Legandre integration
|
||||
*
|
||||
* @param u
|
||||
* @param sourceFunction
|
||||
* @param transResFunction
|
||||
* @param set
|
||||
* @return
|
||||
*/
|
||||
private fun integrate(
|
||||
u: Double,
|
||||
sourceFunction: ParametricBiFunction,
|
||||
transResFunction: ParametricBiFunction,
|
||||
set: Values): Double {
|
||||
|
||||
val eMax = set.getDouble("E0") + 5.0
|
||||
|
||||
if (u >= eMax) {
|
||||
return 0.0
|
||||
}
|
||||
|
||||
|
||||
val fsSource: (Double) -> Double = fss?.let { fss ->
|
||||
{ eIn: Double ->
|
||||
(0 until fss.size()).sumByDouble { fss.getP(it) * sourceFunction.value(fss.getE(it), eIn, set) }
|
||||
}
|
||||
} ?: { eIn: Double -> sourceFunction.value(0.0, eIn, set) }
|
||||
|
||||
|
||||
val integrator: UnivariateIntegrator<*> = if (fast) {
|
||||
when {
|
||||
eMax - u < 300 -> NumassIntegrator.getFastInterator()
|
||||
eMax - u > 2000 -> NumassIntegrator.getHighDensityIntegrator()
|
||||
else -> NumassIntegrator.getDefaultIntegrator()
|
||||
}
|
||||
|
||||
} else {
|
||||
NumassIntegrator.getHighDensityIntegrator()
|
||||
}
|
||||
|
||||
return integrator.integrate(u, eMax) { eIn -> fsSource(eIn) * transResFunction.value(eIn, u, set) }
|
||||
}
|
||||
|
||||
private inner class TransRes : AbstractParametricBiFunction(arrayOf("X", "trap")) {
|
||||
|
||||
override fun providesDeriv(name: String): Boolean {
|
||||
return true
|
||||
}
|
||||
|
||||
override fun derivValue(parName: String, eIn: Double, u: Double, set: Values): Double {
|
||||
return when (parName) {
|
||||
"X" -> throw NotDefinedException()//TODO implement p0 derivative
|
||||
"trap" -> lossRes(transmission.derivative(parName), eIn, u, set)
|
||||
else -> super.derivValue(parName, eIn, u, set)
|
||||
}
|
||||
}
|
||||
|
||||
override fun value(eIn: Double, u: Double, set: Values): Double {
|
||||
|
||||
val p0 = transmission.p0(eIn, set)
|
||||
return p0 * resolution.value(eIn, u, set) + lossRes(transmission, eIn, u, set)
|
||||
}
|
||||
|
||||
private fun lossRes(transFunc: ParametricBiFunction, eIn: Double, u: Double, set: Values): Double {
|
||||
val integrand = { eOut: Double -> transFunc.value(eIn, eOut, set) * resolution.value(eOut, u, set) }
|
||||
|
||||
val border = u + 30
|
||||
val firstPart = NumassIntegrator.getFastInterator().integrate(u, Math.min(eIn, border), integrand)
|
||||
val secondPart: Double = if (eIn > border) {
|
||||
if (fast) {
|
||||
NumassIntegrator.getDefaultIntegrator().integrate(border, eIn, integrand)
|
||||
} else {
|
||||
NumassIntegrator.getHighDensityIntegrator().integrate(border, eIn, integrand)
|
||||
}
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
return firstPart + secondPart
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
companion object {
|
||||
|
||||
private val list = arrayOf("X", "trap", "E0", "mnu2", "msterile2", "U2")
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,104 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.models.sterile
|
||||
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.maths.MathPlugin
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.meta.MetaBuilder
|
||||
import hep.dataforge.stat.fit.ParamSet
|
||||
import hep.dataforge.stat.parametric.ParametricFunction
|
||||
import inr.numass.Numass
|
||||
import inr.numass.models.BetaSpectrum
|
||||
import inr.numass.models.ModularSpectrum
|
||||
import inr.numass.models.NBkgSpectrum
|
||||
import inr.numass.models.ResolutionFunction
|
||||
import org.apache.commons.math3.analysis.BivariateFunction
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
*/
|
||||
object TestModels {
|
||||
|
||||
/**
|
||||
* @param args the command line arguments
|
||||
*/
|
||||
@JvmStatic
|
||||
fun main(args: Array<String>) {
|
||||
val context = Numass.buildContext()
|
||||
/*
|
||||
<model modelName="sterile" fssFile="FS.txt">
|
||||
<resolution width = "1.22e-4" tailAlpha="1e-2"/>
|
||||
<transmission trapping="numass.trap2016"/>
|
||||
</model>
|
||||
*/
|
||||
val meta = MetaBuilder("model")
|
||||
.putNode(MetaBuilder("resolution")
|
||||
.putValue("width", 1.22e-4)
|
||||
.putValue("tailAlpha", 1e-2)
|
||||
)
|
||||
.putNode(MetaBuilder("transmission")
|
||||
.putValue("trapping", "numass.trap2016")
|
||||
)
|
||||
val oldFunc = oldModel(context, meta)
|
||||
val newFunc = newModel(context, meta)
|
||||
|
||||
val allPars = ParamSet()
|
||||
.setPar("N", 7e+05, 1.8e+03, 0.0, java.lang.Double.POSITIVE_INFINITY)
|
||||
.setPar("bkg", 1.0, 0.050)
|
||||
.setPar("E0", 18575.0, 1.4)
|
||||
.setPar("mnu2", 0.0, 1.0)
|
||||
.setPar("msterile2", 1000.0 * 1000.0, 0.0)
|
||||
.setPar("U2", 0.0, 1e-4, -1.0, 1.0)
|
||||
.setPar("X", 0.04, 0.01, 0.0, java.lang.Double.POSITIVE_INFINITY)
|
||||
.setPar("trap", 1.0, 0.01, 0.0, java.lang.Double.POSITIVE_INFINITY)
|
||||
|
||||
var u = 14000.0
|
||||
while (u < 18600) {
|
||||
// double oldVal = oldFunc.value(u, allPars);
|
||||
// double newVal = newFunc.value(u, allPars);
|
||||
val oldVal = oldFunc.derivValue("trap", u, allPars)
|
||||
val newVal = newFunc.derivValue("trap", u, allPars)
|
||||
System.out.printf("%f\t%g\t%g\t%g%n", u, oldVal, newVal, 1.0 - oldVal / newVal)
|
||||
u += 100.0
|
||||
}
|
||||
}
|
||||
|
||||
private fun oldModel(context: Context, meta: Meta): ParametricFunction {
|
||||
val A = meta.getDouble("resolution", meta.getDouble("resolution.width", 8.3e-5)!!)!!//8.3e-5
|
||||
val from = meta.getDouble("from", 13900.0)!!
|
||||
val to = meta.getDouble("to", 18700.0)!!
|
||||
context.chronicle.report("Setting up tritium model with real transmission function")
|
||||
val resolutionTail: BivariateFunction
|
||||
if (meta.hasValue("resolution.tailAlpha")) {
|
||||
resolutionTail = ResolutionFunction.getAngledTail(meta.getDouble("resolution.tailAlpha")!!, meta.getDouble("resolution.tailBeta", 0.0)!!)
|
||||
} else {
|
||||
resolutionTail = ResolutionFunction.getRealTail()
|
||||
}
|
||||
//RangedNamedSetSpectrum beta = new BetaSpectrum(context.io().getFile("FS.txt"));
|
||||
val beta = BetaSpectrum()
|
||||
val sp = ModularSpectrum(beta, ResolutionFunction(A, resolutionTail), from, to)
|
||||
if (meta.getBoolean("caching", false)!!) {
|
||||
context.chronicle.report("Caching turned on")
|
||||
sp.setCaching(true)
|
||||
}
|
||||
//Adding trapping energy dependence
|
||||
|
||||
if (meta.hasValue("transmission.trapping")) {
|
||||
val trap = MathPlugin.buildFrom(context).buildBivariateFunction(meta.getString("transmission.trapping"))
|
||||
sp.setTrappingFunction(trap)
|
||||
}
|
||||
|
||||
return NBkgSpectrum(sp)
|
||||
}
|
||||
|
||||
private fun newModel(context: Context, meta: Meta): ParametricFunction {
|
||||
val sp = SterileNeutrinoSpectrum(context, meta)
|
||||
return NBkgSpectrum(sp)
|
||||
}
|
||||
|
||||
}
|
@ -34,7 +34,7 @@ import inr.numass.addSetMarkers
|
||||
import inr.numass.data.analyzers.SmartAnalyzer
|
||||
import inr.numass.data.api.NumassPoint
|
||||
import inr.numass.data.api.NumassSet
|
||||
import inr.numass.subtract
|
||||
import inr.numass.subtractAmplitudeSpectrum
|
||||
import inr.numass.unbox
|
||||
import inr.numass.utils.ExpressionUtils
|
||||
import java.io.PrintWriter
|
||||
@ -169,7 +169,7 @@ val subtractEmptyTask = task("dif") {
|
||||
node("empty", empty.meta)
|
||||
}
|
||||
val res = DataUtils.combine(input, empty, Table::class.java, resMeta) { mergeData, emptyData ->
|
||||
subtract(context, mergeData, emptyData)
|
||||
subtractAmplitudeSpectrum(context, mergeData, emptyData)
|
||||
}
|
||||
|
||||
res.goal.onComplete { r, _ ->
|
||||
|
Loading…
Reference in New Issue
Block a user