Separated Input and Output management. Input moved to context
This commit is contained in:
parent
a489d33548
commit
86f7af61d3
@ -22,14 +22,12 @@ import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.tables.Adapters.*
|
||||
import hep.dataforge.tables.TableFormat
|
||||
import hep.dataforge.tables.TableFormatBuilder
|
||||
import hep.dataforge.values.Value
|
||||
import hep.dataforge.values.ValueMap
|
||||
import hep.dataforge.values.ValueType
|
||||
import hep.dataforge.values.Values
|
||||
import hep.dataforge.values.*
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.COUNT_KEY
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.COUNT_RATE_ERROR_KEY
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.COUNT_RATE_KEY
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.LENGTH_KEY
|
||||
import inr.numass.data.analyzers.TimeAnalyzer.AveragingMethod.*
|
||||
import inr.numass.data.api.*
|
||||
import inr.numass.data.api.NumassPoint.Companion.HV_KEY
|
||||
import java.util.*
|
||||
@ -65,7 +63,7 @@ class TimeAnalyzer(processor: SignalProcessor? = null) : AbstractAnalyzer(proces
|
||||
|
||||
val res = getEventsWithDelay(block, config).asSequence().chunked(chunkSize) {
|
||||
analyzeSequence(it.asSequence(), t0)
|
||||
}.toList().average()
|
||||
}.toList().mean(config.getEnum("mean", WEIGHTED))
|
||||
|
||||
return ValueMap.Builder(res)
|
||||
.putValue(NumassAnalyzer.WINDOW_KEY, arrayOf(loChannel, upChannel))
|
||||
@ -104,7 +102,7 @@ class TimeAnalyzer(processor: SignalProcessor? = null) : AbstractAnalyzer(proces
|
||||
val res = point.blocks.stream()
|
||||
.map { it -> analyze(it, config) }
|
||||
.toList()
|
||||
.average()
|
||||
.mean(config.getEnum("mean", WEIGHTED))
|
||||
|
||||
val map = HashMap(res.asMap())
|
||||
if (point is NumassPoint) {
|
||||
@ -113,16 +111,36 @@ class TimeAnalyzer(processor: SignalProcessor? = null) : AbstractAnalyzer(proces
|
||||
return ValueMap(map)
|
||||
}
|
||||
|
||||
enum class AveragingMethod {
|
||||
ARITHMETIC,
|
||||
WEIGHTED,
|
||||
GEOMETRIC
|
||||
}
|
||||
|
||||
/**
|
||||
* Combine multiple blocks from the same point into one
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
private fun List<Values>.average(): Values {
|
||||
private fun List<Values>.mean(method: AveragingMethod): Values {
|
||||
|
||||
val totalTime = sumByDouble { it.getDouble(LENGTH_KEY) }
|
||||
val countRate = sumByDouble { it.getDouble(COUNT_RATE_KEY) * it.getDouble(LENGTH_KEY) } / totalTime
|
||||
val countRateDispersion = sumByDouble { Math.pow(it.getDouble(COUNT_RATE_ERROR_KEY) * it.getDouble(LENGTH_KEY) / totalTime, 2.0) }
|
||||
|
||||
val (countRate, countRateDispersion) = when (method) {
|
||||
ARITHMETIC -> Pair(
|
||||
sumByDouble { it.getDouble(COUNT_RATE_KEY) } / size,
|
||||
sumByDouble { Math.pow(it.getDouble(COUNT_RATE_ERROR_KEY), 2.0) } / size / size
|
||||
)
|
||||
WEIGHTED -> Pair(
|
||||
sumByDouble { it.getDouble(COUNT_RATE_KEY) * it.getDouble(LENGTH_KEY) } / totalTime,
|
||||
sumByDouble { Math.pow(it.getDouble(COUNT_RATE_ERROR_KEY) * it.getDouble(LENGTH_KEY) / totalTime, 2.0) }
|
||||
)
|
||||
GEOMETRIC -> {
|
||||
val mean = Math.exp(sumByDouble { Math.log(it.getDouble(COUNT_RATE_KEY)) } / size)
|
||||
val variance = Math.pow(mean / size, 2.0) * sumByDouble { Math.pow(it.getDouble(COUNT_RATE_ERROR_KEY) / it.getDouble(COUNT_RATE_KEY), 2.0) }
|
||||
Pair(mean, variance)
|
||||
}
|
||||
}
|
||||
|
||||
return ValueMap.Builder(first())
|
||||
.putValue(LENGTH_KEY, totalTime)
|
||||
|
@ -9,11 +9,13 @@ import hep.dataforge.kodex.join
|
||||
import hep.dataforge.maths.chain.MarkovChain
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.actions.TimeAnalyzerAction
|
||||
import inr.numass.data.analyzers.TimeAnalyzer
|
||||
import inr.numass.data.api.OrphanNumassEvent
|
||||
import inr.numass.data.api.SimpleNumassPoint
|
||||
import inr.numass.data.generateBlock
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
import java.lang.Math.exp
|
||||
import java.time.Instant
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
@ -42,8 +44,8 @@ fun main(args: Array<String>) {
|
||||
val point = (1..num).map {
|
||||
Global.generate {
|
||||
MarkovChain(OrphanNumassEvent(1000, 0)) { event ->
|
||||
//val deltaT = rnd.nextDeltaTime(cr * exp(- event.timeOffset / 1e11))
|
||||
val deltaT = rnd.nextDeltaTime(cr)
|
||||
val deltaT = rnd.nextDeltaTime(cr * exp(- event.timeOffset.toDouble() / 5e10))
|
||||
//val deltaT = rnd.nextDeltaTime(cr)
|
||||
OrphanNumassEvent(1000, event.timeOffset + deltaT)
|
||||
}.generateBlock(start.plusNanos(it * length), length)
|
||||
}
|
||||
@ -57,6 +59,7 @@ fun main(args: Array<String>) {
|
||||
"binNum" to 200
|
||||
"t0Step" to 200
|
||||
"chunkSize" to 5000
|
||||
"mean" to TimeAnalyzer.AveragingMethod.ARITHMETIC
|
||||
}
|
||||
|
||||
TimeAnalyzerAction().simpleRun(point, meta);
|
||||
|
@ -8,6 +8,8 @@ import hep.dataforge.description.ValueDef
|
||||
import hep.dataforge.description.ValueDefs
|
||||
import hep.dataforge.fx.plots.FXPlotManager
|
||||
import hep.dataforge.fx.plots.plus
|
||||
import hep.dataforge.io.output.Output.Companion.BINARY_MODE
|
||||
import hep.dataforge.io.output.stream
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import hep.dataforge.kodex.configure
|
||||
import hep.dataforge.kodex.task
|
||||
@ -73,8 +75,8 @@ val monitorTableTask = task("monitor") {
|
||||
model { meta ->
|
||||
dependsOn(selectTask, meta)
|
||||
configure(meta.getMetaOrEmpty("monitor"))
|
||||
configure{
|
||||
meta.useMeta("analyzer"){putNode(it)}
|
||||
configure {
|
||||
meta.useMeta("analyzer") { putNode(it) }
|
||||
}
|
||||
}
|
||||
join<NumassSet, Table> { data ->
|
||||
@ -105,7 +107,7 @@ val monitorTableTask = task("monitor") {
|
||||
//add set markers
|
||||
addSetMarkers(frame, data.values)
|
||||
}
|
||||
context.output.get(name, stage = "numass.monitor", type = "dfp").render(PlotFrame.Wrapper().wrap(frame))
|
||||
context.output.get(name, "numass.monitor", BINARY_MODE).render(PlotFrame.Wrapper().wrap(frame))
|
||||
|
||||
}
|
||||
}
|
||||
@ -221,7 +223,7 @@ val fitTask = task("fit") {
|
||||
configure(meta.getMeta("fit"))
|
||||
}
|
||||
pipe<Table, FitResult> { data ->
|
||||
context.output.stream(name, "numass.fit").use { out ->
|
||||
context.output[name, "numass.fit"].stream.use { out ->
|
||||
val writer = PrintWriter(out)
|
||||
writer.printf("%n*** META ***%n")
|
||||
writer.println(meta.toString())
|
||||
|
Loading…
Reference in New Issue
Block a user