numass model update
This commit is contained in:
parent
21109003b8
commit
7655237a2c
@ -43,7 +43,7 @@ UnivariateIntegrator integrator = NumassContext.defaultIntegrator;
|
|||||||
|
|
||||||
double border = 13.6;
|
double border = 13.6;
|
||||||
|
|
||||||
UnivariateFunction ratioFunction = {e->integrator.integrate(scatterFunction, 0 , e) / integrator.integrate(scatterFunction, e, 100)}
|
UnivariateFunction ratioFunction = {e->integrator.integrate(0, e, scatterFunction) / integrator.integrate(e, 100, scatterFunction)}
|
||||||
|
|
||||||
double ratio = ratioFunction.value(border);
|
double ratio = ratioFunction.value(border);
|
||||||
println "The true excitation to ionization ratio with border energy $border is $ratio";
|
println "The true excitation to ionization ratio with border energy $border is $ratio";
|
||||||
@ -83,7 +83,7 @@ UnivariateFunction integral = {double u ->
|
|||||||
return 0d;
|
return 0d;
|
||||||
} else {
|
} else {
|
||||||
UnivariateFunction integrand = {double e -> resolutionValue.value(u-e) * newScatterFunction.value(e)};
|
UnivariateFunction integrand = {double e -> resolutionValue.value(u-e) * newScatterFunction.value(e)};
|
||||||
return integrator.integrate(integrand, 0d, u)
|
return integrator.integrate(0d, u, integrand)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -6,9 +6,8 @@
|
|||||||
|
|
||||||
package inr.numass.scripts
|
package inr.numass.scripts
|
||||||
|
|
||||||
import hep.dataforge.maths.integration.GaussRuleIntegrator;
|
import hep.dataforge.maths.integration.GaussRuleIntegrator
|
||||||
import hep.dataforge.maths.integration.UnivariateIntegrator;
|
import hep.dataforge.maths.integration.UnivariateIntegrator
|
||||||
import inr.numass.models.LossCalculator;
|
|
||||||
import org.apache.commons.math3.analysis.UnivariateFunction
|
import org.apache.commons.math3.analysis.UnivariateFunction
|
||||||
|
|
||||||
UnivariateIntegrator integrator = new GaussRuleIntegrator(400);
|
UnivariateIntegrator integrator = new GaussRuleIntegrator(400);
|
||||||
@ -42,6 +41,6 @@ UnivariateFunction func = {double eps ->
|
|||||||
|
|
||||||
//caclulating lorentz integral analythically
|
//caclulating lorentz integral analythically
|
||||||
double tailNorm = (Math.atan((ionPos - cutoff) * 2d / ionW) + 0.5 * Math.PI) * ionW / 2d;
|
double tailNorm = (Math.atan((ionPos - cutoff) * 2d / ionW) + 0.5 * Math.PI) * ionW / 2d;
|
||||||
final double norm = integrator.integrate(func, 0d, cutoff) + tailNorm;
|
final double norm = integrator.integrate(0d, cutoff, func) + tailNorm;
|
||||||
|
|
||||||
println 1/norm;
|
println 1/norm;
|
@ -24,11 +24,11 @@ def cutoff = 20d
|
|||||||
UnivariateFunction loss = LossCalculator.getSingleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio);
|
UnivariateFunction loss = LossCalculator.getSingleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio);
|
||||||
|
|
||||||
|
|
||||||
println integrator.integrate(loss,0,600);
|
println integrator.integrate(0, 600, loss);
|
||||||
println integrator.integrate(loss,0, cutoff);
|
println integrator.integrate(0, cutoff, loss);
|
||||||
println integrator.integrate(loss,cutoff,600d);
|
println integrator.integrate(cutoff, 600d, loss);
|
||||||
|
|
||||||
println (integrator.integrate(loss,0,cutoff) + integrator.integrate(loss,cutoff,3000d));
|
println (integrator.integrate(0, cutoff, loss) + integrator.integrate(cutoff, 3000d, loss));
|
||||||
//double tailValue = (Math.atan((ionPos-cutoff)*2d/ionW) + 0.5*Math.PI)*ionW/2;
|
//double tailValue = (Math.atan((ionPos-cutoff)*2d/ionW) + 0.5*Math.PI)*ionW/2;
|
||||||
//println tailValue
|
//println tailValue
|
||||||
//println integrator.integrate(loss,0,100);
|
//println integrator.integrate(loss,0,100);
|
||||||
|
@ -15,17 +15,14 @@
|
|||||||
*/
|
*/
|
||||||
package inr.numass.scripts
|
package inr.numass.scripts
|
||||||
|
|
||||||
|
import hep.dataforge.io.PrintFunction
|
||||||
import hep.dataforge.maths.integration.UnivariateIntegrator
|
import hep.dataforge.maths.integration.UnivariateIntegrator
|
||||||
import hep.dataforge.plots.data.PlottableXYFunction
|
import hep.dataforge.plots.data.PlottableXYFunction
|
||||||
import hep.dataforge.plots.jfreechart.JFreeChartFrame
|
import hep.dataforge.plots.jfreechart.JFreeChartFrame
|
||||||
|
import hep.dataforge.stat.fit.ParamSet
|
||||||
import inr.numass.models.ExperimentalVariableLossSpectrum
|
import inr.numass.models.ExperimentalVariableLossSpectrum
|
||||||
import org.apache.commons.math3.analysis.UnivariateFunction
|
import org.apache.commons.math3.analysis.UnivariateFunction
|
||||||
|
|
||||||
import inr.numass.Numass
|
|
||||||
import hep.dataforge.stat.fit.ParamSet
|
|
||||||
import hep.dataforge.io.PrintFunction
|
|
||||||
|
|
||||||
|
|
||||||
//double exPos = 12.94
|
//double exPos = 12.94
|
||||||
//double exW = 1.31
|
//double exW = 1.31
|
||||||
//double ionPos = 14.13
|
//double ionPos = 14.13
|
||||||
@ -50,17 +47,17 @@ UnivariateIntegrator integrator = NumassContext.defaultIntegrator
|
|||||||
UnivariateFunction exFunc = lsp.excitation(params.getValue("exPos"), params.getValue("exW"));
|
UnivariateFunction exFunc = lsp.excitation(params.getValue("exPos"), params.getValue("exW"));
|
||||||
frame.add(PlottableXYFunction.plotFunction("ex", exFunc, 0d, 50d, 500));
|
frame.add(PlottableXYFunction.plotFunction("ex", exFunc, 0d, 50d, 500));
|
||||||
|
|
||||||
println "excitation norm factor " + integrator.integrate(exFunc, 0, 50)
|
println "excitation norm factor " + integrator.integrate(0, 50, exFunc)
|
||||||
|
|
||||||
UnivariateFunction ionFunc = lsp.ionization(params.getValue("ionPos"), params.getValue("ionW"));
|
UnivariateFunction ionFunc = lsp.ionization(params.getValue("ionPos"), params.getValue("ionW"));
|
||||||
frame.add(PlottableXYFunction.plotFunction("ion", ionFunc, 0d, 50d, 500));
|
frame.add(PlottableXYFunction.plotFunction("ion", ionFunc, 0d, 50d, 500));
|
||||||
|
|
||||||
println "ionization norm factor " + integrator.integrate(ionFunc, 0, 200)
|
println "ionization norm factor " + integrator.integrate(0, 200, ionFunc)
|
||||||
|
|
||||||
UnivariateFunction sumFunc = lsp.singleScatterFunction(params);
|
UnivariateFunction sumFunc = lsp.singleScatterFunction(params);
|
||||||
frame.add(PlottableXYFunction.plotFunction("sum", sumFunc, 0d, 50d, 500));
|
frame.add(PlottableXYFunction.plotFunction("sum", sumFunc, 0d, 50d, 500));
|
||||||
|
|
||||||
println "sum norm factor " + integrator.integrate(sumFunc, 0, 100)
|
println "sum norm factor " + integrator.integrate(0, 100, sumFunc)
|
||||||
|
|
||||||
PrintFunction.printFunctionSimple(new PrintWriter(System.out), sumFunc, 0d, 50d, 100)
|
PrintFunction.printFunctionSimple(new PrintWriter(System.out), sumFunc, 0d, 50d, 100)
|
||||||
|
|
||||||
|
@ -0,0 +1,46 @@
|
|||||||
|
package inr.numass.scripts.temp
|
||||||
|
|
||||||
|
import hep.dataforge.context.Context
|
||||||
|
import hep.dataforge.context.Global
|
||||||
|
import hep.dataforge.grind.Grind
|
||||||
|
import hep.dataforge.grind.GrindShell
|
||||||
|
import hep.dataforge.grind.helpers.PlotHelper
|
||||||
|
import hep.dataforge.meta.Meta
|
||||||
|
import hep.dataforge.plots.fx.FXPlotManager
|
||||||
|
import hep.dataforge.stat.fit.ParamSet
|
||||||
|
import hep.dataforge.utils.MetaMorph
|
||||||
|
import inr.numass.NumassPlugin
|
||||||
|
import inr.numass.models.sterile.SterileNeutrinoSpectrum
|
||||||
|
|
||||||
|
Context ctx = Global.instance()
|
||||||
|
ctx.pluginManager().load(FXPlotManager)
|
||||||
|
ctx.pluginManager().load(NumassPlugin.class)
|
||||||
|
|
||||||
|
|
||||||
|
new GrindShell(ctx).eval {
|
||||||
|
SterileNeutrinoSpectrum sp1 = new SterileNeutrinoSpectrum(context, Meta.empty());
|
||||||
|
SterileNeutrinoSpectrum sp2 = new SterileNeutrinoSpectrum(context, Grind.buildMeta(useFSS: false));
|
||||||
|
|
||||||
|
def params = MetaMorph.morph(ParamSet,
|
||||||
|
Grind.buildMeta("params") {
|
||||||
|
N(value: 6e5, err: 1e5, lower: 0)
|
||||||
|
bkg(value: 2, err: 0.1)
|
||||||
|
E0(value: 18575, err: 0.1)
|
||||||
|
mnu2(value: 0, err: 0.01)
|
||||||
|
msterile2(value: 1000**2, err: 1)
|
||||||
|
U2(value: 0, err: 1e-3)
|
||||||
|
X(value: 0, err: 0.01, lower: 0)
|
||||||
|
trap(value: 0, err: 0.05)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def xs = (1..400).collect{18000 + it*2}
|
||||||
|
|
||||||
|
def sp1Points = xs.collect { sp1.value(it, params) }
|
||||||
|
def sp2Points = xs.collect { sp2.value(it, params) }
|
||||||
|
|
||||||
|
|
||||||
|
(plots as PlotHelper).plot(xs,sp1Points,"FSS")
|
||||||
|
(plots as PlotHelper).plot(xs,sp2Points,"noFSS")
|
||||||
|
}
|
@ -22,7 +22,7 @@ public class CustomNBkgSpectrum extends NBkgSpectrum {
|
|||||||
UnivariateFunction differentialBkgFunction = NumassUtils.tritiumBackgroundFunction(amplitude);
|
UnivariateFunction differentialBkgFunction = NumassUtils.tritiumBackgroundFunction(amplitude);
|
||||||
UnivariateFunction integralBkgFunction =
|
UnivariateFunction integralBkgFunction =
|
||||||
(x) -> NumassIntegrator.getDefaultIntegrator()
|
(x) -> NumassIntegrator.getDefaultIntegrator()
|
||||||
.integrate(differentialBkgFunction, x, 18580d);
|
.integrate(x, 18580d, differentialBkgFunction);
|
||||||
return new CustomNBkgSpectrum(source, integralBkgFunction);
|
return new CustomNBkgSpectrum(source, integralBkgFunction);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -65,7 +65,7 @@ public class EmpiricalLossSpectrum extends AbstractParametricFunction {
|
|||||||
return LossCalculator.instance().getLossValue(probs, Ei, Ef);
|
return LossCalculator.instance().getLossValue(probs, Ei, Ef);
|
||||||
};
|
};
|
||||||
UnivariateFunction integrand = (double x) -> transmission.value(x) * lossFunction.value(x, U - shift);
|
UnivariateFunction integrand = (double x) -> transmission.value(x) * lossFunction.value(x, U - shift);
|
||||||
return noLossProb * transmission.value(U - shift) + integrator.integrate(integrand, U, eMax);
|
return noLossProb * transmission.value(U - shift) + integrator.integrate(U, eMax, integrand);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -70,7 +70,7 @@ public class GunSpectrum extends AbstractParametricFunction {
|
|||||||
} else if (pos - cutoff * sigma > U * (1 + resA)) {
|
} else if (pos - cutoff * sigma > U * (1 + resA)) {
|
||||||
return 0;
|
return 0;
|
||||||
} else {
|
} else {
|
||||||
return integrator.integrate(integrand, pos - cutoff * sigma, pos + cutoff * sigma);
|
return integrator.integrate(pos - cutoff * sigma, pos + cutoff * sigma, integrand);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -148,7 +148,7 @@ public class GunSpectrum extends AbstractParametricFunction {
|
|||||||
} else if (pos - cutoff * sigma > U * (1 + resA)) {
|
} else if (pos - cutoff * sigma > U * (1 + resA)) {
|
||||||
return 1;
|
return 1;
|
||||||
} else {
|
} else {
|
||||||
return integrator.integrate(integrand, pos - cutoff * sigma, pos + cutoff * sigma);
|
return integrator.integrate(pos - cutoff * sigma, pos + cutoff * sigma, integrand);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -123,7 +123,7 @@ public class LossCalculator {
|
|||||||
double cutoff = 25d;
|
double cutoff = 25d;
|
||||||
//caclulating lorentz integral analythically
|
//caclulating lorentz integral analythically
|
||||||
double tailNorm = (Math.atan((ionPos - cutoff) * 2d / ionW) + 0.5 * Math.PI) * ionW / 2d;
|
double tailNorm = (Math.atan((ionPos - cutoff) * 2d / ionW) + 0.5 * Math.PI) * ionW / 2d;
|
||||||
final double norm = integrator.integrate(func, 0d, cutoff) + tailNorm;
|
final double norm = integrator.integrate(0d, cutoff, func) + tailNorm;
|
||||||
return (e) -> func.value(e) / norm;
|
return (e) -> func.value(e) / norm;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -385,7 +385,7 @@ public class LossCalculator {
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
return integrator.integrate(integrand, 5d, margin);
|
return integrator.integrate(5d, margin, integrand);
|
||||||
};
|
};
|
||||||
|
|
||||||
return FunctionCaching.cacheUnivariateFunction(0, margin, 200, res);
|
return FunctionCaching.cacheUnivariateFunction(0, margin, 200, res);
|
||||||
|
@ -38,7 +38,7 @@ class LossResConvolution implements BivariateFunction {
|
|||||||
public double value(final double Ein, final double U) {
|
public double value(final double Ein, final double U) {
|
||||||
UnivariateFunction integrand = (double Eout) -> loss.value(Ein, Eout) * res.value(Eout, U);
|
UnivariateFunction integrand = (double Eout) -> loss.value(Ein, Eout) * res.value(Eout, U);
|
||||||
//Энергия в принципе не может быть больше начальной и меньше напряжения
|
//Энергия в принципе не может быть больше начальной и меньше напряжения
|
||||||
return NumassIntegrator.getDefaultIntegrator().integrate(integrand, U, Ein);
|
return NumassIntegrator.getDefaultIntegrator().integrate(U, Ein, integrand);
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -58,7 +58,7 @@ class TransmissionConvolution extends AbstractParametricFunction {
|
|||||||
}
|
}
|
||||||
return trans.value(E, U) * spectrum.derivValue(parName, E, set);
|
return trans.value(E, U) * spectrum.derivValue(parName, E, set);
|
||||||
};
|
};
|
||||||
return NumassIntegrator.getDefaultIntegrator().integrate(integrand, Math.max(U, min), max + 1d);
|
return NumassIntegrator.getDefaultIntegrator().integrate(Math.max(U, min), max + 1d, integrand);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
@ -80,6 +80,6 @@ class TransmissionConvolution extends AbstractParametricFunction {
|
|||||||
}
|
}
|
||||||
return trans.value(E, U) * spectrum.value(E, set);
|
return trans.value(E, U) * spectrum.value(E, set);
|
||||||
};
|
};
|
||||||
return NumassIntegrator.getDefaultIntegrator().integrate(integrand, Math.max(U, min), max + 1d);
|
return NumassIntegrator.getDefaultIntegrator().integrate(Math.max(U, min), max + 1d, integrand);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -106,7 +106,7 @@ public class VariableLossSpectrum extends AbstractParametricFunction {
|
|||||||
} else {
|
} else {
|
||||||
integrator = NumassIntegrator.getDefaultIntegrator();
|
integrator = NumassIntegrator.getDefaultIntegrator();
|
||||||
}
|
}
|
||||||
return noLossProb * transmission.value(U - shift, set) + integrator.integrate(integrand, U, eMax);
|
return noLossProb * transmission.value(U - shift, set) + integrator.integrate(U, eMax, integrand);
|
||||||
}
|
}
|
||||||
|
|
||||||
public UnivariateFunction singleScatterFunction(ValueProvider set) {
|
public UnivariateFunction singleScatterFunction(ValueProvider set) {
|
||||||
|
@ -132,7 +132,7 @@ public class SterileNeutrinoSpectrum extends AbstractParametricFunction {
|
|||||||
|
|
||||||
double eMax = set.getDouble("E0") + 5d;
|
double eMax = set.getDouble("E0") + 5d;
|
||||||
|
|
||||||
if (u > eMax) {
|
if (u >= eMax) {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -163,7 +163,7 @@ public class SterileNeutrinoSpectrum extends AbstractParametricFunction {
|
|||||||
integrator = NumassIntegrator.getHighDensityIntegrator();
|
integrator = NumassIntegrator.getHighDensityIntegrator();
|
||||||
}
|
}
|
||||||
|
|
||||||
return integrator.integrate(eIn -> fsSource.value(eIn) * transResFunction.value(eIn, u, set), u, eMax);
|
return integrator.integrate(u, eMax, eIn -> fsSource.value(eIn) * transResFunction.value(eIn, u, set));
|
||||||
}
|
}
|
||||||
|
|
||||||
private class TransRes extends AbstractParametricBiFunction {
|
private class TransRes extends AbstractParametricBiFunction {
|
||||||
@ -201,13 +201,13 @@ public class SterileNeutrinoSpectrum extends AbstractParametricFunction {
|
|||||||
UnivariateFunction integrand = (eOut) -> transFunc.value(eIn, eOut, set) * resolution.value(eOut, u, set);
|
UnivariateFunction integrand = (eOut) -> transFunc.value(eIn, eOut, set) * resolution.value(eOut, u, set);
|
||||||
|
|
||||||
double border = u + 30;
|
double border = u + 30;
|
||||||
double firstPart = NumassIntegrator.getFastInterator().integrate(integrand, u, Math.min(eIn, border));
|
double firstPart = NumassIntegrator.getFastInterator().integrate(u, Math.min(eIn, border), integrand);
|
||||||
double secondPart;
|
double secondPart;
|
||||||
if (eIn > border) {
|
if (eIn > border) {
|
||||||
if (fast) {
|
if (fast) {
|
||||||
secondPart = NumassIntegrator.getDefaultIntegrator().integrate(integrand, border, eIn);
|
secondPart = NumassIntegrator.getDefaultIntegrator().integrate(border, eIn, integrand);
|
||||||
} else {
|
} else {
|
||||||
secondPart = NumassIntegrator.getHighDensityIntegrator().integrate(integrand, border, eIn);
|
secondPart = NumassIntegrator.getHighDensityIntegrator().integrate(border, eIn, integrand);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
secondPart = 0;
|
secondPart = 0;
|
||||||
|
@ -12,6 +12,7 @@ import hep.dataforge.data.DataNode;
|
|||||||
import hep.dataforge.data.DataSet;
|
import hep.dataforge.data.DataSet;
|
||||||
import hep.dataforge.description.TypedActionDef;
|
import hep.dataforge.description.TypedActionDef;
|
||||||
import hep.dataforge.meta.Laminate;
|
import hep.dataforge.meta.Laminate;
|
||||||
|
import hep.dataforge.meta.Meta;
|
||||||
import hep.dataforge.stat.fit.FitResult;
|
import hep.dataforge.stat.fit.FitResult;
|
||||||
import hep.dataforge.stat.fit.ParamSet;
|
import hep.dataforge.stat.fit.ParamSet;
|
||||||
import hep.dataforge.stat.fit.UpperLimitGenerator;
|
import hep.dataforge.stat.fit.UpperLimitGenerator;
|
||||||
@ -41,12 +42,11 @@ public class NumassFitScanSummaryTask extends AbstractTask<Table> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected TaskModel transformModel(TaskModel model) {
|
protected void updateModel(TaskModel.Builder model, Meta meta) {
|
||||||
//Transmit meta as-is
|
model.dependsOn("fitscan", meta, "fitscan");
|
||||||
model.dependsOn("fitscan", model.meta(), "fitscan");
|
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public String getName() {
|
public String getName() {
|
||||||
return "scansum";
|
return "scansum";
|
||||||
|
@ -78,17 +78,14 @@ public class NumassFitScanTask extends AbstractTask<FitResult> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected TaskModel transformModel(TaskModel model) {
|
protected void updateModel(TaskModel.Builder model, Meta meta) {
|
||||||
//Transmit meta as-is
|
if (meta.hasMeta("filter")) {
|
||||||
MetaBuilder metaBuilder = new MetaBuilder(model.meta()).removeNode("fit").removeNode("scan");
|
model.dependsOn("filter", meta, "prepare");
|
||||||
if (model.meta().hasMeta("filter")) {
|
} else if (meta.hasMeta("empty")) {
|
||||||
model.dependsOn("filter", metaBuilder.build(), "prepare");
|
model.dependsOn("subtractEmpty", meta, "prepare");
|
||||||
} else if (model.meta().hasMeta("empty")) {
|
|
||||||
model.dependsOn("subtractEmpty", metaBuilder.build(), "prepare");
|
|
||||||
} else {
|
} else {
|
||||||
model.dependsOn("prepare", metaBuilder.build(), "prepare");
|
model.dependsOn("prepare", meta, "prepare");
|
||||||
}
|
}
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -19,7 +19,6 @@ package inr.numass.tasks;
|
|||||||
import hep.dataforge.actions.Action;
|
import hep.dataforge.actions.Action;
|
||||||
import hep.dataforge.data.DataNode;
|
import hep.dataforge.data.DataNode;
|
||||||
import hep.dataforge.meta.Meta;
|
import hep.dataforge.meta.Meta;
|
||||||
import hep.dataforge.meta.MetaBuilder;
|
|
||||||
import hep.dataforge.stat.fit.FitState;
|
import hep.dataforge.stat.fit.FitState;
|
||||||
import hep.dataforge.tables.Table;
|
import hep.dataforge.tables.Table;
|
||||||
import hep.dataforge.workspace.SingleActionTask;
|
import hep.dataforge.workspace.SingleActionTask;
|
||||||
@ -51,12 +50,7 @@ public class NumassFitSummaryTask extends SingleActionTask<FitState, Table> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected TaskModel transformModel(TaskModel model) {
|
protected void updateModel(TaskModel.Builder model, Meta meta) {
|
||||||
//Transmit meta as-is
|
model.dependsOn("fit", meta, "fit");
|
||||||
MetaBuilder meta = model.meta().getBuilder().removeNode("summary");
|
|
||||||
model.dependsOn("fit", meta.build(), "fit");
|
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -20,7 +20,6 @@ import hep.dataforge.actions.Action;
|
|||||||
import hep.dataforge.actions.ActionUtils;
|
import hep.dataforge.actions.ActionUtils;
|
||||||
import hep.dataforge.data.DataNode;
|
import hep.dataforge.data.DataNode;
|
||||||
import hep.dataforge.meta.Meta;
|
import hep.dataforge.meta.Meta;
|
||||||
import hep.dataforge.meta.MetaBuilder;
|
|
||||||
import hep.dataforge.plotfit.PlotFitResultAction;
|
import hep.dataforge.plotfit.PlotFitResultAction;
|
||||||
import hep.dataforge.stat.fit.FitAction;
|
import hep.dataforge.stat.fit.FitAction;
|
||||||
import hep.dataforge.stat.fit.FitResult;
|
import hep.dataforge.stat.fit.FitResult;
|
||||||
@ -65,17 +64,15 @@ public class NumassFitTask extends SingleActionTask<Table, FitResult> {
|
|||||||
return model.meta().getMeta("fit");
|
return model.meta().getMeta("fit");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected TaskModel transformModel(TaskModel model) {
|
protected void updateModel(TaskModel.Builder model, Meta meta) {
|
||||||
//Transmit meta as-is
|
if (meta.hasMeta("filter")) {
|
||||||
MetaBuilder metaBuilder = new MetaBuilder(model.meta()).removeNode("fit");
|
model.dependsOn("filter", meta, "prepare");
|
||||||
if (model.meta().hasMeta("filter")) {
|
} else if (meta.hasMeta("empty")) {
|
||||||
model.dependsOn("filter", metaBuilder.build(), "prepare");
|
model.dependsOn("subtractEmpty", meta, "prepare");
|
||||||
} else if (model.meta().hasMeta("empty")) {
|
|
||||||
model.dependsOn("subtractEmpty", metaBuilder.build(), "prepare");
|
|
||||||
} else {
|
} else {
|
||||||
model.dependsOn("prepare", metaBuilder.build(), "prepare");
|
model.dependsOn("prepare", meta, "prepare");
|
||||||
}
|
}
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -84,13 +84,12 @@ public class NumassPrepareTask extends AbstractTask<Table> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected TaskModel transformModel(TaskModel model) {
|
protected void updateModel(TaskModel.Builder model, Meta meta) {
|
||||||
if (model.hasValue("data.from")) {
|
if (meta.hasValue("data.from")) {
|
||||||
model.data(model.getString("data.from.*"));
|
model.data(meta.getString("data.from.*"));
|
||||||
} else {
|
} else {
|
||||||
model.data("*");
|
model.data("*");
|
||||||
}
|
}
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// private DataSet.Builder<NumassData> readData(Work callback, Context context, URI numassRoot, Meta meta) {
|
// private DataSet.Builder<NumassData> readData(Work callback, Context context, URI numassRoot, Meta meta) {
|
||||||
|
@ -6,7 +6,7 @@ import hep.dataforge.context.Context;
|
|||||||
import hep.dataforge.data.DataNode;
|
import hep.dataforge.data.DataNode;
|
||||||
import hep.dataforge.description.TypedActionDef;
|
import hep.dataforge.description.TypedActionDef;
|
||||||
import hep.dataforge.meta.Laminate;
|
import hep.dataforge.meta.Laminate;
|
||||||
import hep.dataforge.meta.MetaBuilder;
|
import hep.dataforge.meta.Meta;
|
||||||
import hep.dataforge.tables.Table;
|
import hep.dataforge.tables.Table;
|
||||||
import hep.dataforge.tables.TableTransform;
|
import hep.dataforge.tables.TableTransform;
|
||||||
import hep.dataforge.values.Value;
|
import hep.dataforge.values.Value;
|
||||||
@ -34,15 +34,14 @@ public class NumassTableFilterTask extends SingleActionTask<Table, Table> {
|
|||||||
return data.getCheckedNode("prepare", Table.class);
|
return data.getCheckedNode("prepare", Table.class);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
protected TaskModel transformModel(TaskModel model) {
|
protected void updateModel(TaskModel.Builder model, Meta meta) {
|
||||||
MetaBuilder metaBuilder = new MetaBuilder(model.meta()).removeNode("filter");
|
if (meta.hasMeta("empty")) {
|
||||||
if (model.meta().hasMeta("empty")) {
|
model.dependsOn("subtractEmpty", meta, "prepare");
|
||||||
model.dependsOn("subtractEmpty", metaBuilder.build(), "prepare");
|
|
||||||
} else {
|
} else {
|
||||||
model.dependsOn("prepare", metaBuilder.build(), "prepare");
|
model.dependsOn("prepare", meta, "prepare");
|
||||||
}
|
}
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -37,7 +37,7 @@ public class TestNeLossParametrisation {
|
|||||||
UnivariateFunction oldFunction = LossCalculator.getSingleScatterFunction();
|
UnivariateFunction oldFunction = LossCalculator.getSingleScatterFunction();
|
||||||
UnivariateFunction newFunction = getSingleScatterFunction(12.86, 16.78, 1.65, 12.38, 4.79);
|
UnivariateFunction newFunction = getSingleScatterFunction(12.86, 16.78, 1.65, 12.38, 4.79);
|
||||||
|
|
||||||
Double norm = new GaussRuleIntegrator(200).integrate(newFunction, 0d, 100d);
|
Double norm = new GaussRuleIntegrator(200).integrate(0d, 100d, newFunction);
|
||||||
|
|
||||||
System.out.println(norm);
|
System.out.println(norm);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user