minor update
This commit is contained in:
parent
1c3ce3ae2b
commit
0d4f6e3d7e
@ -46,13 +46,12 @@ abstract class AbstractAnalyzer @JvmOverloads constructor(private val processor:
|
||||
override fun getEvents(block: NumassBlock, meta: Meta): Stream<NumassEvent> {
|
||||
val loChannel = meta.getInt("window.lo", 0)
|
||||
val upChannel = meta.getInt("window.up", Integer.MAX_VALUE)
|
||||
var res = getAllEvents(block).filter { event ->
|
||||
// if (meta.getBoolean("sort", false)) {
|
||||
// res = res.sorted(compareBy { it.timeOffset })
|
||||
// }
|
||||
return getAllEvents(block).filter { event ->
|
||||
event.amplitude.toInt() in loChannel..(upChannel - 1)
|
||||
}
|
||||
if (meta.getBoolean("sort", false)) {
|
||||
res = res.sorted(compareBy { it.timeOffset })
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
protected fun getAllEvents(block: NumassBlock): Stream<NumassEvent> {
|
||||
|
@ -22,7 +22,7 @@ import kotlin.streams.asStream
|
||||
* Plot time analysis graphics
|
||||
*/
|
||||
@ValueDefs(
|
||||
ValueDef(key = "normalize", type = arrayOf(ValueType.BOOLEAN), def = "true", info = "Normalize t0 dependencies"),
|
||||
ValueDef(key = "normalize", type = arrayOf(ValueType.BOOLEAN), def = "false", info = "Normalize t0 dependencies"),
|
||||
ValueDef(key = "t0", type = arrayOf(ValueType.NUMBER), def = "30e3", info = "The default t0 in nanoseconds"),
|
||||
ValueDef(key = "window.lo", type = arrayOf(ValueType.NUMBER), def = "0", info = "Lower boundary for amplitude window"),
|
||||
ValueDef(key = "window.up", type = arrayOf(ValueType.NUMBER), def = "10000", info = "Upper boundary for amplitude window"),
|
||||
@ -40,13 +40,15 @@ class TimeAnalyzerAction : OneToOneAction<NumassPoint, Table>() {
|
||||
override fun execute(context: Context, name: String, input: NumassPoint, inputMeta: Laminate): Table {
|
||||
val log = getLog(context, name);
|
||||
|
||||
val initialEstimate = analyzer.analyze(input, inputMeta)
|
||||
val trueCR = initialEstimate.getDouble("cr")
|
||||
val analyzerMeta = inputMeta.getMetaOrEmpty("analyzer")
|
||||
|
||||
log.report("The expected count rate for ${initialEstimate.getDouble(T0_KEY)} us delay is $trueCR")
|
||||
val initialEstimate = analyzer.analyze(input, analyzerMeta)
|
||||
val cr = initialEstimate.getDouble("cr")
|
||||
|
||||
log.report("The expected count rate for ${initialEstimate.getDouble(T0_KEY)} us delay is $cr")
|
||||
|
||||
val binNum = inputMeta.getInt("binNum", 1000);
|
||||
val binSize = inputMeta.getDouble("binSize", 1.0 / trueCR * 10 / binNum * 1e6)
|
||||
val binSize = inputMeta.getDouble("binSize", 1.0 / cr * 10 / binNum * 1e6)
|
||||
|
||||
val histogram = UnivariateHistogram.buildUniform(0.0, binSize * binNum, binSize)
|
||||
.fill(analyzer
|
||||
@ -72,7 +74,7 @@ class TimeAnalyzerAction : OneToOneAction<NumassPoint, Table>() {
|
||||
|
||||
|
||||
val functionPlot = XYFunctionPlot.plot(name + "_theory", 0.0, binSize * binNum) {
|
||||
trueCR / 1e6 * initialEstimate.getInt(NumassAnalyzer.COUNT_KEY) * binSize * Math.exp(-it * trueCR / 1e6)
|
||||
cr / 1e6 * initialEstimate.getInt(NumassAnalyzer.COUNT_KEY) * binSize * Math.exp(-it * cr / 1e6)
|
||||
}
|
||||
|
||||
context.plot("histogram", name, listOf(histogramPlot, functionPlot)) {
|
||||
@ -106,15 +108,19 @@ class TimeAnalyzerAction : OneToOneAction<NumassPoint, Table>() {
|
||||
}
|
||||
}
|
||||
|
||||
(1..100).map { inputMeta.getDouble("t0Step", 1000.0) * it }.map { t ->
|
||||
val result = analyzer.analyze(input, inputMeta.builder.setValue("t0", t))
|
||||
val minT0 = inputMeta.getDouble("t0.min", 0.0)
|
||||
val maxT0 = inputMeta.getDouble("t0.max", 1e9 / cr)
|
||||
val steps = inputMeta.getInt("t0.steps", 100)
|
||||
|
||||
|
||||
val norm = if (inputMeta.getBoolean("normalize", true)) {
|
||||
trueCR
|
||||
val norm = if (inputMeta.getBoolean("normalize", false)) {
|
||||
cr
|
||||
} else {
|
||||
1.0
|
||||
}
|
||||
|
||||
(0..steps).map { minT0 + (maxT0-minT0)/steps*it }.map { t ->
|
||||
val result = analyzer.analyze(input, analyzerMeta.builder.setValue("t0", t))
|
||||
|
||||
if (Thread.currentThread().isInterrupted) {
|
||||
throw InterruptedException()
|
||||
}
|
||||
|
@ -1,115 +0,0 @@
|
||||
package inr.numass.data
|
||||
|
||||
import hep.dataforge.maths.chain.Chain
|
||||
import hep.dataforge.maths.chain.MarkovChain
|
||||
import hep.dataforge.maths.chain.StatefulChain
|
||||
import hep.dataforge.stat.defaultGenerator
|
||||
import hep.dataforge.tables.Table
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.CHANNEL_KEY
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.COUNT_RATE_KEY
|
||||
import inr.numass.data.api.NumassBlock
|
||||
import inr.numass.data.api.OrphanNumassEvent
|
||||
import inr.numass.data.api.SimpleBlock
|
||||
import kotlinx.coroutines.experimental.channels.takeWhile
|
||||
import kotlinx.coroutines.experimental.channels.toList
|
||||
import org.apache.commons.math3.distribution.EnumeratedRealDistribution
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
import java.time.Duration
|
||||
import java.time.Instant
|
||||
|
||||
private fun RandomGenerator.nextExp(mean: Double): Double {
|
||||
return -mean * Math.log(1 - nextDouble())
|
||||
}
|
||||
|
||||
private fun RandomGenerator.nextDeltaTime(cr: Double): Long {
|
||||
return (nextExp(1.0 / cr) * 1e9).toLong()
|
||||
}
|
||||
|
||||
suspend fun Chain<OrphanNumassEvent>.generateBlock(start: Instant, length: Long): NumassBlock {
|
||||
return SimpleBlock.produce(start, Duration.ofNanos(length)) {
|
||||
channel.takeWhile { it.timeOffset < length }.toList()
|
||||
}
|
||||
}
|
||||
|
||||
internal val defaultAmplitudeGenerator: RandomGenerator.(OrphanNumassEvent?, Long) -> Short = { _, _ -> ((nextDouble() + 2.0) * 100).toShort() }
|
||||
|
||||
/**
|
||||
* Generate an event chain with fixed count rate
|
||||
* @param cr = count rate in Hz
|
||||
* @param rnd = random number generator
|
||||
* @param amp amplitude generator for the chain. The receiver is rng, first argument is the previous event and second argument
|
||||
* is the delay between the next event. The result is the amplitude in channels
|
||||
*/
|
||||
fun generateEvents(
|
||||
cr: Double,
|
||||
rnd: RandomGenerator = defaultGenerator,
|
||||
amp: RandomGenerator.(OrphanNumassEvent?, Long) -> Short = defaultAmplitudeGenerator): Chain<OrphanNumassEvent> {
|
||||
return MarkovChain(OrphanNumassEvent(rnd.amp(null, 0), 0)) { event ->
|
||||
val deltaT = rnd.nextDeltaTime(cr)
|
||||
OrphanNumassEvent(rnd.amp(event, deltaT), event.timeOffset + deltaT)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a chain using provided spectrum for amplitudes
|
||||
*/
|
||||
fun generateEvents(
|
||||
cr: Double,
|
||||
rnd: RandomGenerator = defaultGenerator,
|
||||
spectrum: Table): Chain<OrphanNumassEvent> {
|
||||
|
||||
val channels = DoubleArray(spectrum.size())
|
||||
val values = DoubleArray(spectrum.size())
|
||||
for (i in 0 until spectrum.size()) {
|
||||
channels[i] = spectrum.get(CHANNEL_KEY, i).double
|
||||
values[i] = spectrum.get(COUNT_RATE_KEY, i).double
|
||||
}
|
||||
val distribution = EnumeratedRealDistribution(channels, values)
|
||||
|
||||
return generateEvents(cr, rnd) { _, _ -> distribution.sample().toShort() }
|
||||
}
|
||||
|
||||
private data class BunchState(var bunchStart: Long = 0, var bunchEnd: Long = 0)
|
||||
|
||||
/**
|
||||
* The chain of bunched events
|
||||
* @param cr count rate of events inside bunch
|
||||
* @param bunchRate number of bunches per second
|
||||
* @param bunchLength the length of bunch
|
||||
*/
|
||||
fun buildBunchChain(
|
||||
cr: Double,
|
||||
bunchRate: Double,
|
||||
bunchLength: Double,
|
||||
rnd: RandomGenerator = defaultGenerator,
|
||||
amp: RandomGenerator.(OrphanNumassEvent?, Long) -> Short = defaultAmplitudeGenerator
|
||||
): Chain<OrphanNumassEvent> {
|
||||
return StatefulChain(
|
||||
BunchState(0, 0),
|
||||
OrphanNumassEvent(rnd.amp(null, 0), 0)) { event ->
|
||||
if (event.timeOffset >= bunchEnd) {
|
||||
bunchStart = bunchEnd + rnd.nextDeltaTime(bunchRate)
|
||||
bunchEnd = bunchStart + (bunchLength * 1e9).toLong()
|
||||
OrphanNumassEvent(rnd.amp(null, 0), bunchStart)
|
||||
} else {
|
||||
val deltaT = rnd.nextDeltaTime(cr)
|
||||
OrphanNumassEvent(rnd.amp(event, deltaT), event.timeOffset + deltaT)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private class MergingState(private val chains: List<Chain<OrphanNumassEvent>>) {
|
||||
suspend fun poll(): OrphanNumassEvent {
|
||||
val next = chains.minBy { it.value.timeOffset } ?: chains.first()
|
||||
val res = next.value
|
||||
next.next()
|
||||
return res
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
fun mergeEventChains(vararg chains: Chain<OrphanNumassEvent>): Chain<OrphanNumassEvent> {
|
||||
return StatefulChain(MergingState(listOf(*chains)), OrphanNumassEvent(0, 0)) {
|
||||
poll()
|
||||
}
|
||||
}
|
141
numass-main/src/main/kotlin/inr/numass/data/NumassGenerator.kt
Normal file
141
numass-main/src/main/kotlin/inr/numass/data/NumassGenerator.kt
Normal file
@ -0,0 +1,141 @@
|
||||
package inr.numass.data
|
||||
|
||||
import hep.dataforge.maths.chain.Chain
|
||||
import hep.dataforge.maths.chain.MarkovChain
|
||||
import hep.dataforge.maths.chain.StatefulChain
|
||||
import hep.dataforge.stat.defaultGenerator
|
||||
import hep.dataforge.tables.Table
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.CHANNEL_KEY
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.COUNT_RATE_KEY
|
||||
import inr.numass.data.api.NumassBlock
|
||||
import inr.numass.data.api.OrphanNumassEvent
|
||||
import inr.numass.data.api.SimpleBlock
|
||||
import kotlinx.coroutines.experimental.channels.asReceiveChannel
|
||||
import kotlinx.coroutines.experimental.channels.takeWhile
|
||||
import kotlinx.coroutines.experimental.channels.toList
|
||||
import org.apache.commons.math3.distribution.EnumeratedRealDistribution
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
import java.time.Duration
|
||||
import java.time.Instant
|
||||
|
||||
private fun RandomGenerator.nextExp(mean: Double): Double {
|
||||
return -mean * Math.log(1 - nextDouble())
|
||||
}
|
||||
|
||||
private fun RandomGenerator.nextDeltaTime(cr: Double): Long {
|
||||
return (nextExp(1.0 / cr) * 1e9).toLong()
|
||||
}
|
||||
|
||||
suspend fun Sequence<OrphanNumassEvent>.generateBlock(start: Instant, length: Long): NumassBlock {
|
||||
return SimpleBlock.produce(start, Duration.ofNanos(length)) {
|
||||
asReceiveChannel().takeWhile { it.timeOffset < length }.toList()
|
||||
}
|
||||
}
|
||||
|
||||
private class MergingState(private val chains: List<Chain<OrphanNumassEvent>>) {
|
||||
suspend fun poll(): OrphanNumassEvent {
|
||||
val next = chains.minBy { it.value.timeOffset } ?: chains.first()
|
||||
val res = next.value
|
||||
next.next()
|
||||
return res
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Merge event chains in ascending time order
|
||||
*/
|
||||
fun List<Chain<OrphanNumassEvent>>.merge(): Chain<OrphanNumassEvent> {
|
||||
return StatefulChain(MergingState(this), OrphanNumassEvent(0, 0)) {
|
||||
poll()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply dead time based on event that caused it
|
||||
*/
|
||||
fun Chain<OrphanNumassEvent>.withDeadTime(deadTime: (OrphanNumassEvent) -> Long): Chain<OrphanNumassEvent> {
|
||||
return MarkovChain(this.value) {
|
||||
val start = this.value
|
||||
val dt = deadTime(start)
|
||||
do {
|
||||
val next = next()
|
||||
} while (next.timeOffset - start.timeOffset < dt)
|
||||
this.value
|
||||
}
|
||||
}
|
||||
|
||||
object NumassGenerator {
|
||||
|
||||
val defaultAmplitudeGenerator: RandomGenerator.(OrphanNumassEvent?, Long) -> Short = { _, _ -> ((nextDouble() + 2.0) * 100).toShort() }
|
||||
|
||||
/**
|
||||
* Generate an event chain with fixed count rate
|
||||
* @param cr = count rate in Hz
|
||||
* @param rnd = random number generator
|
||||
* @param amp amplitude generator for the chain. The receiver is rng, first argument is the previous event and second argument
|
||||
* is the delay between the next event. The result is the amplitude in channels
|
||||
*/
|
||||
fun generateEvents(
|
||||
cr: Double,
|
||||
rnd: RandomGenerator = defaultGenerator,
|
||||
amp: RandomGenerator.(OrphanNumassEvent?, Long) -> Short = defaultAmplitudeGenerator): Chain<OrphanNumassEvent> {
|
||||
return MarkovChain(OrphanNumassEvent(rnd.amp(null, 0), 0)) { event ->
|
||||
val deltaT = rnd.nextDeltaTime(cr)
|
||||
OrphanNumassEvent(rnd.amp(event, deltaT), event.timeOffset + deltaT)
|
||||
}
|
||||
}
|
||||
|
||||
fun mergeEventChains(vararg chains: Chain<OrphanNumassEvent>): Chain<OrphanNumassEvent> {
|
||||
return listOf(*chains).merge()
|
||||
}
|
||||
|
||||
|
||||
private data class BunchState(var bunchStart: Long = 0, var bunchEnd: Long = 0)
|
||||
|
||||
/**
|
||||
* The chain of bunched events
|
||||
* @param cr count rate of events inside bunch
|
||||
* @param bunchRate number of bunches per second
|
||||
* @param bunchLength the length of bunch
|
||||
*/
|
||||
fun generateBunches(
|
||||
cr: Double,
|
||||
bunchRate: Double,
|
||||
bunchLength: Double,
|
||||
rnd: RandomGenerator = defaultGenerator,
|
||||
amp: RandomGenerator.(OrphanNumassEvent?, Long) -> Short = defaultAmplitudeGenerator
|
||||
): Chain<OrphanNumassEvent> {
|
||||
return StatefulChain(
|
||||
BunchState(0, 0),
|
||||
OrphanNumassEvent(rnd.amp(null, 0), 0)) { event ->
|
||||
if (event.timeOffset >= bunchEnd) {
|
||||
bunchStart = bunchEnd + rnd.nextDeltaTime(bunchRate)
|
||||
bunchEnd = bunchStart + (bunchLength * 1e9).toLong()
|
||||
OrphanNumassEvent(rnd.amp(null, 0), bunchStart)
|
||||
} else {
|
||||
val deltaT = rnd.nextDeltaTime(cr)
|
||||
OrphanNumassEvent(rnd.amp(event, deltaT), event.timeOffset + deltaT)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a chain using provided spectrum for amplitudes
|
||||
*/
|
||||
fun generateEvents(
|
||||
cr: Double,
|
||||
rnd: RandomGenerator = defaultGenerator,
|
||||
spectrum: Table): Chain<OrphanNumassEvent> {
|
||||
|
||||
val channels = DoubleArray(spectrum.size())
|
||||
val values = DoubleArray(spectrum.size())
|
||||
for (i in 0 until spectrum.size()) {
|
||||
channels[i] = spectrum.get(CHANNEL_KEY, i).double
|
||||
values[i] = spectrum.get(COUNT_RATE_KEY, i).double
|
||||
}
|
||||
val distribution = EnumeratedRealDistribution(channels, values)
|
||||
|
||||
return generateEvents(cr, rnd) { _, _ -> distribution.sample().toShort() }
|
||||
}
|
||||
}
|
@ -50,7 +50,7 @@ class PileUpSimulator {
|
||||
|
||||
constructor(length: Long, rnd: RandomGenerator, countRate: Double) {
|
||||
this.rnd = rnd
|
||||
generator = generateEvents(countRate, rnd)
|
||||
generator = NumassGenerator.generateEvents(countRate, rnd)
|
||||
this.pointLength = length
|
||||
}
|
||||
|
||||
|
@ -2,11 +2,9 @@ package inr.numass.scripts
|
||||
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import inr.numass.actions.TimeAnalyzerAction
|
||||
import inr.numass.data.NumassGenerator
|
||||
import inr.numass.data.api.SimpleNumassPoint
|
||||
import inr.numass.data.buildBunchChain
|
||||
import inr.numass.data.generateBlock
|
||||
import inr.numass.data.generateEvents
|
||||
import inr.numass.data.mergeEventChains
|
||||
import kotlinx.coroutines.experimental.channels.produce
|
||||
import kotlinx.coroutines.experimental.channels.toList
|
||||
import kotlinx.coroutines.experimental.runBlocking
|
||||
@ -21,10 +19,10 @@ fun main(args: Array<String>) {
|
||||
|
||||
val blockchannel = produce {
|
||||
(1..num).forEach {
|
||||
val regularChain = generateEvents(cr)
|
||||
val bunchChain = buildBunchChain(40.0, 0.01, 5.0)
|
||||
val regularChain = NumassGenerator.generateEvents(cr)
|
||||
val bunchChain = NumassGenerator.generateBunches(40.0, 0.01, 5.0)
|
||||
|
||||
send(mergeEventChains(regularChain, bunchChain).generateBlock(start.plusNanos(it * length), length))
|
||||
send(NumassGenerator.mergeEventChains(regularChain, bunchChain).generateBlock(start.plusNanos(it * length), length))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -64,6 +64,8 @@ fun main(args: Array<String>) {
|
||||
val histogram = SimpleHistogram(arrayOf(0.0, 0.0), arrayOf(20.0, 100.0))
|
||||
histogram.fill(
|
||||
TimeAnalyzer().getEventsWithDelay(point, meta)
|
||||
.filter { it.second <10000 }
|
||||
.filter { it.first.channel == 0 }
|
||||
.map { arrayOf(it.first.amplitude.toDouble(), it.second.toDouble()/1e3) }
|
||||
.asStream()
|
||||
)
|
||||
|
@ -6,17 +6,14 @@ import hep.dataforge.kodex.buildMeta
|
||||
import hep.dataforge.kodex.coroutineContext
|
||||
import hep.dataforge.kodex.generate
|
||||
import hep.dataforge.kodex.join
|
||||
import hep.dataforge.maths.chain.MarkovChain
|
||||
import hep.dataforge.plots.jfreechart.JFreeChartPlugin
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.actions.TimeAnalyzerAction
|
||||
import inr.numass.data.NumassGenerator
|
||||
import inr.numass.data.analyzers.TimeAnalyzer
|
||||
import inr.numass.data.api.OrphanNumassEvent
|
||||
import inr.numass.data.api.SimpleNumassPoint
|
||||
import inr.numass.data.generateBlock
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
import java.lang.Math.exp
|
||||
import inr.numass.data.withDeadTime
|
||||
import java.time.Instant
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
@ -29,27 +26,11 @@ fun main(args: Array<String>) {
|
||||
val num = 2
|
||||
val dt = 6.5
|
||||
|
||||
val rnd = JDKRandomGenerator()
|
||||
|
||||
fun RandomGenerator.nextExp(mean: Double): Double {
|
||||
return -mean * Math.log(1 - nextDouble())
|
||||
}
|
||||
|
||||
fun RandomGenerator.nextDeltaTime(cr: Double): Long {
|
||||
return (nextExp(1.0 / cr) * 1e9).toLong()
|
||||
}
|
||||
|
||||
|
||||
val start = Instant.now()
|
||||
|
||||
|
||||
val point = (1..num).map {
|
||||
Global.generate {
|
||||
MarkovChain(OrphanNumassEvent(1000, 0)) { event ->
|
||||
val deltaT = rnd.nextDeltaTime(cr * exp(- event.timeOffset.toDouble() / 5e10))
|
||||
//val deltaT = rnd.nextDeltaTime(cr)
|
||||
OrphanNumassEvent(1000, event.timeOffset + deltaT)
|
||||
}.generateBlock(start.plusNanos(it * length), length)
|
||||
NumassGenerator.generateEvents(cr).withDeadTime { (dt*1000).toLong() }.generateBlock(start.plusNanos(it * length), length)
|
||||
}
|
||||
}.join(Global.coroutineContext) { blocks ->
|
||||
SimpleNumassPoint(blocks, 12000.0)
|
||||
@ -57,12 +38,14 @@ fun main(args: Array<String>) {
|
||||
|
||||
|
||||
val meta = buildMeta {
|
||||
"analyzer" to {
|
||||
"t0" to 3000
|
||||
"binNum" to 200
|
||||
"t0Step" to 200
|
||||
"chunkSize" to 5000
|
||||
"mean" to TimeAnalyzer.AveragingMethod.ARITHMETIC
|
||||
}
|
||||
"binNum" to 200
|
||||
"t0.max" to 1e4
|
||||
}
|
||||
|
||||
TimeAnalyzerAction().simpleRun(point, meta);
|
||||
}
|
@ -0,0 +1,72 @@
|
||||
/*
|
||||
* Copyright 2018 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package inr.numass.scripts.timeanalysis
|
||||
|
||||
import hep.dataforge.context.Global
|
||||
import hep.dataforge.fx.output.FXOutputManager
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import hep.dataforge.kodex.coroutineContext
|
||||
import hep.dataforge.kodex.generate
|
||||
import hep.dataforge.kodex.join
|
||||
import hep.dataforge.plots.jfreechart.JFreeChartPlugin
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.actions.TimeAnalyzerAction
|
||||
import inr.numass.data.NumassGenerator
|
||||
import inr.numass.data.api.SimpleNumassPoint
|
||||
import inr.numass.data.generateBlock
|
||||
import inr.numass.data.withDeadTime
|
||||
import java.time.Instant
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
Global.output = FXOutputManager()
|
||||
JFreeChartPlugin().startGlobal()
|
||||
NumassPlugin().startGlobal()
|
||||
|
||||
val cr = 3.0
|
||||
val length = (30000 *1e9).toLong()
|
||||
val num = 1
|
||||
val dt = 6.5
|
||||
|
||||
val start = Instant.now()
|
||||
|
||||
val point = (1..num).map {
|
||||
Global.generate {
|
||||
val events = NumassGenerator
|
||||
.generateEvents(cr)
|
||||
|
||||
val bunches = NumassGenerator
|
||||
.generateBunches(6.0, 0.001, 5.0)
|
||||
|
||||
val discharges = NumassGenerator
|
||||
.generateBunches(50.0,0.001,0.1)
|
||||
|
||||
NumassGenerator.mergeEventChains(events, bunches, discharges).withDeadTime { (dt * 1000).toLong() }.generateBlock(start.plusNanos(it * length), length)
|
||||
}
|
||||
}.join(Global.coroutineContext) { blocks ->
|
||||
SimpleNumassPoint(blocks, 18000.0)
|
||||
}.get()
|
||||
|
||||
|
||||
val meta = buildMeta {
|
||||
"analyzer" to {
|
||||
"t0" to 30000
|
||||
}
|
||||
"binNum" to 200
|
||||
}
|
||||
|
||||
TimeAnalyzerAction().simpleRun(point, meta);
|
||||
}
|
Loading…
Reference in New Issue
Block a user