2015-12-18 16:20:47 +03:00
|
|
|
|
/*
|
|
|
|
|
* Copyright 2015 Alexander Nozik.
|
|
|
|
|
*
|
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
|
*
|
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
*
|
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
|
* limitations under the License.
|
|
|
|
|
*/
|
2016-05-31 20:05:15 +03:00
|
|
|
|
package inr.numass.models;
|
|
|
|
|
|
|
|
|
|
import hep.dataforge.exceptions.NamingException;
|
|
|
|
|
import hep.dataforge.exceptions.NotDefinedException;
|
2016-07-24 21:44:57 +03:00
|
|
|
|
import hep.dataforge.fitting.parametric.AbstractParametricFunction;
|
2016-05-31 20:05:15 +03:00
|
|
|
|
import hep.dataforge.maths.integration.GaussRuleIntegrator;
|
|
|
|
|
import hep.dataforge.maths.integration.UnivariateIntegrator;
|
|
|
|
|
import hep.dataforge.values.NamedValueSet;
|
|
|
|
|
import java.util.List;
|
|
|
|
|
import org.apache.commons.math3.analysis.BivariateFunction;
|
|
|
|
|
import org.apache.commons.math3.analysis.UnivariateFunction;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @author Darksnake
|
|
|
|
|
*/
|
|
|
|
|
public class EmpiricalLossSpectrum extends AbstractParametricFunction {
|
|
|
|
|
|
|
|
|
|
public static String[] names = {"X", "shift"};
|
|
|
|
|
private final UnivariateFunction transmission;
|
|
|
|
|
private final double eMax;
|
|
|
|
|
|
|
|
|
|
private final UnivariateIntegrator integrator;
|
|
|
|
|
|
|
|
|
|
public EmpiricalLossSpectrum(UnivariateFunction transmission, double eMax) throws NamingException {
|
|
|
|
|
super(names);
|
|
|
|
|
integrator = new GaussRuleIntegrator(300);
|
|
|
|
|
this.transmission = transmission;
|
|
|
|
|
this.eMax = eMax;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public double derivValue(String parName, double x, NamedValueSet set) {
|
|
|
|
|
throw new NotDefinedException();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public double value(double U, NamedValueSet set) {
|
|
|
|
|
if (U >= eMax) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
double X = set.getDouble("X");
|
|
|
|
|
final double shift = set.getDouble("shift");
|
|
|
|
|
|
|
|
|
|
//FIXME тут толщины усреднены по длине источника, а надо брать чистого Пуассона
|
|
|
|
|
final List<Double> probs = LossCalculator.instance().getGunLossProbabilities(X);
|
|
|
|
|
final double noLossProb = probs.get(0);
|
|
|
|
|
final BivariateFunction lossFunction = (Ei, Ef) -> {
|
|
|
|
|
return LossCalculator.instance().getLossValue(probs, Ei, Ef);
|
|
|
|
|
};
|
|
|
|
|
UnivariateFunction integrand = (double x) -> transmission.value(x) * lossFunction.value(x, U - shift);
|
|
|
|
|
return noLossProb * transmission.value(U - shift) + integrator.integrate(integrand, U, eMax);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@Override
|
|
|
|
|
public boolean providesDeriv(String name) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|