235 lines
8.9 KiB
Java
235 lines
8.9 KiB
Java
|
/*
|
|||
|
* Copyright 2015 Alexander Nozik.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
package inr.numass.models;
|
|||
|
|
|||
|
import hep.dataforge.functions.AbstractParametricFunction;
|
|||
|
import hep.dataforge.functions.ParametricFunction;
|
|||
|
import hep.dataforge.maths.NamedDoubleSet;
|
|||
|
import hep.dataforge.names.NamedUtils;
|
|||
|
import java.util.ArrayList;
|
|||
|
import java.util.List;
|
|||
|
import org.apache.commons.math3.analysis.BivariateFunction;
|
|||
|
import org.slf4j.LoggerFactory;
|
|||
|
|
|||
|
/**
|
|||
|
* Modular spectrum for any source spectrum with separate calculation for
|
|||
|
* different transmission components
|
|||
|
*
|
|||
|
* @author Darksnake
|
|||
|
*/
|
|||
|
public class ModularSpectrum extends AbstractParametricFunction {
|
|||
|
|
|||
|
private static final String[] list = {"X", "trap"};
|
|||
|
private LossCalculator calculator;
|
|||
|
List<NamedSpectrumCaching> cacheList;
|
|||
|
NamedSpectrumCaching trapping;
|
|||
|
BivariateFunction resolution;
|
|||
|
RangedNamedSetSpectrum sourceSpectrum;
|
|||
|
boolean caching = true;
|
|||
|
double cacheMin;
|
|||
|
double cacheMax;
|
|||
|
|
|||
|
/**
|
|||
|
*
|
|||
|
* @param source
|
|||
|
* @param resolution
|
|||
|
* @param cacheMin - нижняя граница кэширования. Должна быть с небольшим
|
|||
|
* запасом по отношению к данным
|
|||
|
* @param cacheMax - верхняя граница кэширования.
|
|||
|
*/
|
|||
|
public ModularSpectrum(RangedNamedSetSpectrum source, BivariateFunction resolution, double cacheMin, double cacheMax) {
|
|||
|
super(NamedUtils.combineNamesWithEquals(list, source.namesAsArray()));
|
|||
|
if (cacheMin >= cacheMax) {
|
|||
|
throw new IllegalArgumentException();
|
|||
|
}
|
|||
|
this.cacheMin = cacheMin;
|
|||
|
this.cacheMax = cacheMax;
|
|||
|
this.resolution = resolution;
|
|||
|
this.calculator = LossCalculator.instance();
|
|||
|
this.sourceSpectrum = source;
|
|||
|
setupCache();
|
|||
|
}
|
|||
|
|
|||
|
public ModularSpectrum(RangedNamedSetSpectrum source, BivariateFunction resolution) {
|
|||
|
this(source, resolution, Double.NaN, Double.NaN);
|
|||
|
setCaching(false);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
*
|
|||
|
* @param source
|
|||
|
* @param resA - относительная ширина разрешения
|
|||
|
* @param cacheMin - нижняя граница кэширования. Должна быть с небольшим
|
|||
|
* запасом по отношению к данным
|
|||
|
* @param cacheMax - верхняя граница кэширования, может быть без запаса.
|
|||
|
*/
|
|||
|
public ModularSpectrum(RangedNamedSetSpectrum source, double resA, double cacheMin, double cacheMax) {
|
|||
|
this(source, new ResolutionFunction(resA), cacheMin, cacheMax);
|
|||
|
}
|
|||
|
|
|||
|
public ModularSpectrum(RangedNamedSetSpectrum source, double resA) {
|
|||
|
this(source, new ResolutionFunction(resA));
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Отдельный метод нужен на случай, если бета-спектр(FSS) или разрешение
|
|||
|
* будут меняться в процессе
|
|||
|
*/
|
|||
|
private void setupCache() {
|
|||
|
|
|||
|
//обновляем кэши для трэппинга и упругого прохождения
|
|||
|
BivariateFunction trapFunc = LossCalculator.getTrapFunction();
|
|||
|
BivariateFunction trapRes = new LossResConvolution(trapFunc, resolution);
|
|||
|
|
|||
|
ParametricFunction elasticSpectrum = new TransmissionConvolution(sourceSpectrum, resolution, sourceSpectrum);
|
|||
|
ParametricFunction trapSpectrum = new TransmissionConvolution(sourceSpectrum, trapRes, sourceSpectrum);
|
|||
|
/**
|
|||
|
* обнуляем кэш рассеяния
|
|||
|
*/
|
|||
|
cacheList = new ArrayList<>();
|
|||
|
//добавляем нулевой порядок - упругое рассеяние
|
|||
|
|
|||
|
TritiumSpectrumCaching elasticCache = new TritiumSpectrumCaching(elasticSpectrum, cacheMin, cacheMax);
|
|||
|
elasticCache.setCachingEnabled(caching);
|
|||
|
cacheList.add(elasticCache);
|
|||
|
this.trapping = new TritiumSpectrumCaching(trapSpectrum, cacheMin, cacheMax);
|
|||
|
this.trapping.setCachingEnabled(caching);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Обновляем кэш рассеяния если требуемый порядок выше, чем тот, что есть
|
|||
|
*
|
|||
|
* @param order
|
|||
|
*/
|
|||
|
private void updateScatterCache(int order) {
|
|||
|
if (order >= cacheList.size()) {
|
|||
|
LoggerFactory.getLogger(getClass())
|
|||
|
.debug("Updating scatter cache up to order of '{}'", order);
|
|||
|
// здесь можно сэкономить вызовы, начиная с cacheList.size(), но надо это?
|
|||
|
for (int i = 1; i < order + 1; i++) {
|
|||
|
BivariateFunction loss = calculator.getLossFunction(i);
|
|||
|
BivariateFunction lossRes = new LossResConvolution(loss, resolution);
|
|||
|
ParametricFunction inelasticSpectrum = new TransmissionConvolution(sourceSpectrum, lossRes, sourceSpectrum);
|
|||
|
TritiumSpectrumCaching spCatch = new TritiumSpectrumCaching(inelasticSpectrum, cacheMin, cacheMax);
|
|||
|
spCatch.setCachingEnabled(caching);
|
|||
|
spCatch.setSuppressWarnings(true);
|
|||
|
//TODO сделать пороверку
|
|||
|
cacheList.add(i, spCatch);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public double derivValue(String parName, double U, NamedDoubleSet set) {
|
|||
|
if (U >= sourceSpectrum.max(set)) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
double X = this.getX(set);
|
|||
|
switch (parName) {
|
|||
|
case "X":
|
|||
|
List<Double> probDerivs = calculator.getLossProbDerivs(X);
|
|||
|
updateScatterCache(probDerivs.size() - 1);
|
|||
|
double derivSum = 0;
|
|||
|
|
|||
|
for (int i = 0; i < probDerivs.size(); i++) {
|
|||
|
derivSum += probDerivs.get(i) * cacheList.get(i).value(U, set);
|
|||
|
}
|
|||
|
|
|||
|
return derivSum;
|
|||
|
case "trap":
|
|||
|
return this.trapping.value(U, set);
|
|||
|
default:
|
|||
|
if (sourceSpectrum.names().contains(parName)) {
|
|||
|
List<Double> probs = calculator.getLossProbabilities(X);
|
|||
|
updateScatterCache(probs.size() - 1);
|
|||
|
double sum = 0;
|
|||
|
|
|||
|
for (int i = 0; i < probs.size(); i++) {
|
|||
|
sum += probs.get(i) * cacheList.get(i).derivValue(parName, U, set);
|
|||
|
}
|
|||
|
|
|||
|
sum += this.getTrap(set) * this.trapping.derivValue(parName, U, set);
|
|||
|
return sum;
|
|||
|
} else {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private double getTrap(NamedDoubleSet set) {
|
|||
|
return set.getValue("trap");
|
|||
|
}
|
|||
|
|
|||
|
private double getX(NamedDoubleSet set) {
|
|||
|
return set.getValue("X");
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public boolean providesDeriv(String name) {
|
|||
|
return sourceSpectrum.providesDeriv(name);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Set the boundaries and recalculate cache
|
|||
|
* @param cacheMin
|
|||
|
* @param cacheMax
|
|||
|
*/
|
|||
|
public void setCachingBoundaries(double cacheMin, double cacheMax){
|
|||
|
this.cacheMin = cacheMin;
|
|||
|
this.cacheMax = cacheMax;
|
|||
|
setupCache();
|
|||
|
}
|
|||
|
|
|||
|
public final void setCaching(boolean caching) {
|
|||
|
if(caching && (cacheMin == Double.NaN || cacheMax == Double.NaN)){
|
|||
|
throw new IllegalStateException("Cahing boundaries are not defined");
|
|||
|
}
|
|||
|
|
|||
|
this.caching = caching;
|
|||
|
this.trapping.setCachingEnabled(caching);
|
|||
|
for (NamedSpectrumCaching sp : this.cacheList) {
|
|||
|
sp.setCachingEnabled(caching);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public void setSuppressWarnings(boolean suppress) {
|
|||
|
this.trapping.setSuppressWarnings(suppress);
|
|||
|
for (NamedSpectrumCaching sp : this.cacheList) {
|
|||
|
sp.setSuppressWarnings(suppress);
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public double value(double U, NamedDoubleSet set) {
|
|||
|
if (U >= sourceSpectrum.max(set)) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
double X = this.getX(set);
|
|||
|
|
|||
|
List<Double> probs = calculator.getLossProbabilities(X);
|
|||
|
updateScatterCache(probs.size() - 1);
|
|||
|
double res = 0;
|
|||
|
|
|||
|
for (int i = 0; i < probs.size(); i++) {
|
|||
|
res += probs.get(i) * cacheList.get(i).value(U, set);
|
|||
|
}
|
|||
|
|
|||
|
res += this.getTrap(set) * this.trapping.value(U, set);
|
|||
|
return res;
|
|||
|
}
|
|||
|
}
|