From 4c9c6971350988f8f85779efe622f4492537ca67 Mon Sep 17 00:00:00 2001 From: ilia Date: Mon, 23 Oct 2023 08:32:55 +0300 Subject: [PATCH] add lectures --- lectures/04.DataModel.ipynb | 853 ++++++++++++++++++++++++++++++++++++ 1 file changed, 853 insertions(+) create mode 100644 lectures/04.DataModel.ipynb diff --git a/lectures/04.DataModel.ipynb b/lectures/04.DataModel.ipynb new file mode 100644 index 0000000..c4bfd65 --- /dev/null +++ b/lectures/04.DataModel.ipynb @@ -0,0 +1,853 @@ +{ + "metadata": { + "kernelspec": { + "name": "python", + "display_name": "Python (Pyodide)", + "language": "python" + }, + "language_info": { + "codemirror_mode": { + "name": "python", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8" + } + }, + "nbformat_minor": 5, + "nbformat": 4, + "cells": [ + { + "cell_type": "markdown", + "source": "# Всё в Python является объектом", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "917bfefc-582c-41b4-b3b2-df29da3c7200" + }, + { + "cell_type": "code", + "source": "print(isinstance(\"add\", object))\nprint(isinstance(1_000, object))\nprint(isinstance(3.14, object))", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 1, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "True\n\nTrue\n\nTrue\n" + } + ], + "id": "9aa513ac" + }, + { + "cell_type": "code", + "source": "(3.14).as_integer_ratio()", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "execution_count": 3, + "output_type": "execute_result", + "data": { + "text/plain": [ + "(7070651414971679, 2251799813685248)" + ] + }, + "metadata": {} + } + ], + "id": "3ecb4677" + }, + { + "cell_type": "code", + "source": "class Vector2D:\n x = 0\n y = 0\n \n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec = Vector2D()", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 13, + "outputs": [], + "id": "b7025d1e-79cf-4ba7-a49d-7c1bf2fe063e" + }, + { + "cell_type": "code", + "source": "isinstance(vec, object)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 4, + "outputs": [ + { + "execution_count": 4, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "3371dfc5-234d-481c-8404-f1fd0fd68bb3" + }, + { + "cell_type": "code", + "source": "isinstance(Vector2D, object)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 5, + "outputs": [ + { + "execution_count": 5, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "88ccb376-5fbb-47ed-84b5-4773f26d3490" + }, + { + "cell_type": "code", + "source": "isinstance(object, object)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 4, + "outputs": [ + { + "execution_count": 4, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "4d77d081" + }, + { + "cell_type": "code", + "source": "import math\nisinstance(math, object)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 5, + "outputs": [ + { + "execution_count": 5, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "d4e0bb29-320c-4206-8fc3-4345eda4f73f" + }, + { + "cell_type": "code", + "source": "def add(a,b): return a + b\nisinstance(add, object)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 6, + "outputs": [ + { + "execution_count": 6, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "374f4bc2-7bb6-441d-96aa-392445856565" + }, + { + "cell_type": "code", + "source": "add.x = 1", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 7, + "outputs": [], + "id": "0b0b8d31-917e-4fb0-8d41-3e49cc381494" + }, + { + "cell_type": "markdown", + "source": "# Магические методы", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "cce63a23" + }, + { + "cell_type": "code", + "source": "dir(vec)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 11, + "outputs": [ + { + "execution_count": 11, + "output_type": "execute_result", + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'norm',\n", + " 'x',\n", + " 'y']" + ] + }, + "metadata": {} + } + ], + "id": "f0cac210-b14c-4940-811f-2f7b982014f5" + }, + { + "cell_type": "code", + "source": "dir(add)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 18, + "outputs": [ + { + "execution_count": 18, + "output_type": "execute_result", + "data": { + "text/plain": [ + "['__annotations__',\n", + " '__call__',\n", + " '__class__',\n", + " '__closure__',\n", + " '__code__',\n", + " '__defaults__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__get__',\n", + " '__getattribute__',\n", + " '__globals__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__kwdefaults__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__name__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__qualname__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__']" + ] + }, + "metadata": {} + } + ], + "id": "1b5597dc-484a-43d3-b37a-cd30908d495d" + }, + { + "cell_type": "markdown", + "source": "* Управляют внутренней работой объектов\n* Хранят различную информацию объектов (которую можно получать в runtime)\n* Вызываются при использовании синтаксических конструкций\n* Вызываются встроенными (builtins) функциями\n* Область применения: перегрузка операторов, рефлексия и метапрограммирование", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "bc3cdb2f" + }, + { + "cell_type": "code", + "source": "class TenItemList:\n\n def __len__(self):\n return 10\n\n\nten_item_list = TenItemList()\nlen(ten_item_list)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 8, + "outputs": [ + { + "execution_count": 8, + "output_type": "execute_result", + "data": { + "text/plain": [ + "10" + ] + }, + "metadata": {} + } + ], + "id": "dabd01d8" + }, + { + "cell_type": "markdown", + "source": "# Всё в Python является объектом, а все синтаксические конструкции сводятся к вызовам магических методов", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "0effc8ba" + }, + { + "cell_type": "markdown", + "source": "# Пример сложение\n", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "3841bda9" + }, + { + "cell_type": "code", + "source": "class Vector2D:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n def __add__(self, other):\n return Vector2D(self.x + other.y, self.x + other.y)\n\n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec1 = Vector2D(1,2)\nvec2 = Vector2D(3,4)\nvec3 = vec1 + vec2\nvec3.x, vec3.y", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 10, + "outputs": [ + { + "execution_count": 10, + "output_type": "execute_result", + "data": { + "text/plain": [ + "(5, 5)" + ] + }, + "metadata": {} + } + ], + "id": "e3460fe5" + }, + { + "cell_type": "markdown", + "source": "## Пример присваивание", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "538a0794" + }, + { + "cell_type": "code", + "source": "class Vector2D:\n x = 0\n y = 0\n \n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec = Vector2D()", + "metadata": {}, + "execution_count": 14, + "outputs": [], + "id": "1acd0880" + }, + { + "cell_type": "code", + "source": "vec = Vector2D()\nvec.__getattribute__(\"x\")", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 15, + "outputs": [ + { + "execution_count": 15, + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {} + } + ], + "id": "1f2bfb38" + }, + { + "cell_type": "code", + "source": "vec.__getattribute__(\"norm\")()", + "metadata": {}, + "execution_count": 17, + "outputs": [ + { + "execution_count": 17, + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.0" + ] + }, + "metadata": {} + } + ], + "id": "640d5fad" + }, + { + "cell_type": "code", + "source": "vec.x = 5\nvec.__getattribute__(\"x\")", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 18, + "outputs": [ + { + "execution_count": 18, + "output_type": "execute_result", + "data": { + "text/plain": [ + "5" + ] + }, + "metadata": {} + } + ], + "id": "21efb174" + }, + { + "cell_type": "code", + "source": "vec.__setattr__(\"x\", 10)\ngetattr(vec, \"x\")", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 19, + "outputs": [ + { + "execution_count": 19, + "output_type": "execute_result", + "data": { + "text/plain": [ + "10" + ] + }, + "metadata": {} + } + ], + "id": "dfbce5a2" + }, + { + "cell_type": "code", + "source": "setattr(vec, \"x\", 20)\nvec.x", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 20, + "outputs": [ + { + "execution_count": 20, + "output_type": "execute_result", + "data": { + "text/plain": [ + "20" + ] + }, + "metadata": {} + } + ], + "id": "1d6de7d3" + }, + { + "cell_type": "code", + "source": "class Foo:\n def __setattr__(self, key, value):\n print(key, value)\n\nfoo = Foo()\nfoo.a = \"A\"", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 21, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "a A\n" + } + ], + "id": "40df4888" + }, + { + "cell_type": "code", + "source": "foo.a", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 22, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'Foo' object has no attribute 'a'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_35789/2615815247.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfoo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'Foo' object has no attribute 'a'" + ] + } + ], + "id": "871b0b35" + }, + { + "cell_type": "markdown", + "source": "", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "13c80f91" + }, + { + "cell_type": "markdown", + "source": "# На самом деле все объекты реализованы как словари хранящие атрибуты объекта (однако есть возможности для оптимизаций)", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "266ca832" + }, + { + "cell_type": "code", + "source": "class Vector2D:\n x = 0\n y = 0\n\n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec = Vector2D()", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 23, + "outputs": [], + "id": "af1b83e9" + }, + { + "cell_type": "code", + "source": "vec.__dict__", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 24, + "outputs": [ + { + "execution_count": 24, + "output_type": "execute_result", + "data": { + "text/plain": [ + "{}" + ] + }, + "metadata": {} + } + ], + "id": "acc6da9e" + }, + { + "cell_type": "code", + "source": "Vector2D.__dict__", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 27, + "outputs": [ + { + "execution_count": 27, + "output_type": "execute_result", + "data": { + "text/plain": [ + "mappingproxy({'__module__': '__main__',\n", + " 'x': 0,\n", + " 'y': 0,\n", + " 'norm': ,\n", + " '__dict__': ,\n", + " '__weakref__': ,\n", + " '__doc__': None})" + ] + }, + "metadata": {} + } + ], + "id": "4cfbfaec" + }, + { + "cell_type": "code", + "source": "vec.x = 5\nvec.__dict__", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 26, + "outputs": [ + { + "execution_count": 26, + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'x': 5}" + ] + }, + "metadata": {} + } + ], + "id": "b5eb0e56" + }, + { + "cell_type": "markdown", + "source": "# Модуль inspect --- информация об объектах в runtime\n\n* Не вся информация может быть доступна через магические методы\n* Недоступную информацию можно получить через модуль inspect", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "f4af619e" + }, + { + "cell_type": "code", + "source": "import inspect\n\ndef add(a,b): return a + b\ninspect.isfunction(add)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 28, + "outputs": [ + { + "execution_count": 28, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "cb6a08ad" + }, + { + "cell_type": "code", + "source": "inspect.getsource(add)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 29, + "outputs": [ + { + "execution_count": 29, + "output_type": "execute_result", + "data": { + "text/plain": [ + "'def add(a,b): return a + b\\n'" + ] + }, + "metadata": {} + } + ], + "id": "3bd00ea2" + }, + { + "cell_type": "code", + "source": "from numpy import random\ninspect.getsource(random)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 30, + "outputs": [ + { + "execution_count": 30, + "output_type": "execute_result", + "data": { + "text/plain": [ + "'\"\"\"\\n========================\\nRandom Number Generation\\n========================\\n\\nUse ``default_rng()`` to create a `Generator` and call its methods.\\n\\n=============== =========================================================\\nGenerator\\n--------------- ---------------------------------------------------------\\nGenerator Class implementing all of the random number distributions\\ndefault_rng Default constructor for ``Generator``\\n=============== =========================================================\\n\\n============================================= ===\\nBitGenerator Streams that work with Generator\\n--------------------------------------------- ---\\nMT19937\\nPCG64\\nPCG64DXSM\\nPhilox\\nSFC64\\n============================================= ===\\n\\n============================================= ===\\nGetting entropy to initialize a BitGenerator\\n--------------------------------------------- ---\\nSeedSequence\\n============================================= ===\\n\\n\\nLegacy\\n------\\n\\nFor backwards compatibility with previous versions of numpy before 1.17, the\\nvarious aliases to the global `RandomState` methods are left alone and do not\\nuse the new `Generator` API.\\n\\n==================== =========================================================\\nUtility functions\\n-------------------- ---------------------------------------------------------\\nrandom Uniformly distributed floats over ``[0, 1)``\\nbytes Uniformly distributed random bytes.\\npermutation Randomly permute a sequence / generate a random sequence.\\nshuffle Randomly permute a sequence in place.\\nchoice Random sample from 1-D array.\\n==================== =========================================================\\n\\n==================== =========================================================\\nCompatibility\\nfunctions - removed\\nin the new API\\n-------------------- ---------------------------------------------------------\\nrand Uniformly distributed values.\\nrandn Normally distributed values.\\nranf Uniformly distributed floating point numbers.\\nrandom_integers Uniformly distributed integers in a given range.\\n (deprecated, use ``integers(..., closed=True)`` instead)\\nrandom_sample Alias for `random_sample`\\nrandint Uniformly distributed integers in a given range\\nseed Seed the legacy random number generator.\\n==================== =========================================================\\n\\n==================== =========================================================\\nUnivariate\\ndistributions\\n-------------------- ---------------------------------------------------------\\nbeta Beta distribution over ``[0, 1]``.\\nbinomial Binomial distribution.\\nchisquare :math:`\\\\\\\\chi^2` distribution.\\nexponential Exponential distribution.\\nf F (Fisher-Snedecor) distribution.\\ngamma Gamma distribution.\\ngeometric Geometric distribution.\\ngumbel Gumbel distribution.\\nhypergeometric Hypergeometric distribution.\\nlaplace Laplace distribution.\\nlogistic Logistic distribution.\\nlognormal Log-normal distribution.\\nlogseries Logarithmic series distribution.\\nnegative_binomial Negative binomial distribution.\\nnoncentral_chisquare Non-central chi-square distribution.\\nnoncentral_f Non-central F distribution.\\nnormal Normal / Gaussian distribution.\\npareto Pareto distribution.\\npoisson Poisson distribution.\\npower Power distribution.\\nrayleigh Rayleigh distribution.\\ntriangular Triangular distribution.\\nuniform Uniform distribution.\\nvonmises Von Mises circular distribution.\\nwald Wald (inverse Gaussian) distribution.\\nweibull Weibull distribution.\\nzipf Zipf\\'s distribution over ranked data.\\n==================== =========================================================\\n\\n==================== ==========================================================\\nMultivariate\\ndistributions\\n-------------------- ----------------------------------------------------------\\ndirichlet Multivariate generalization of Beta distribution.\\nmultinomial Multivariate generalization of the binomial distribution.\\nmultivariate_normal Multivariate generalization of the normal distribution.\\n==================== ==========================================================\\n\\n==================== =========================================================\\nStandard\\ndistributions\\n-------------------- ---------------------------------------------------------\\nstandard_cauchy Standard Cauchy-Lorentz distribution.\\nstandard_exponential Standard exponential distribution.\\nstandard_gamma Standard Gamma distribution.\\nstandard_normal Standard normal distribution.\\nstandard_t Standard Student\\'s t-distribution.\\n==================== =========================================================\\n\\n==================== =========================================================\\nInternal functions\\n-------------------- ---------------------------------------------------------\\nget_state Get tuple representing internal state of generator.\\nset_state Set state of generator.\\n==================== =========================================================\\n\\n\\n\"\"\"\\n__all__ = [\\n \\'beta\\',\\n \\'binomial\\',\\n \\'bytes\\',\\n \\'chisquare\\',\\n \\'choice\\',\\n \\'dirichlet\\',\\n \\'exponential\\',\\n \\'f\\',\\n \\'gamma\\',\\n \\'geometric\\',\\n \\'get_state\\',\\n \\'gumbel\\',\\n \\'hypergeometric\\',\\n \\'laplace\\',\\n \\'logistic\\',\\n \\'lognormal\\',\\n \\'logseries\\',\\n \\'multinomial\\',\\n \\'multivariate_normal\\',\\n \\'negative_binomial\\',\\n \\'noncentral_chisquare\\',\\n \\'noncentral_f\\',\\n \\'normal\\',\\n \\'pareto\\',\\n \\'permutation\\',\\n \\'poisson\\',\\n \\'power\\',\\n \\'rand\\',\\n \\'randint\\',\\n \\'randn\\',\\n \\'random\\',\\n \\'random_integers\\',\\n \\'random_sample\\',\\n \\'ranf\\',\\n \\'rayleigh\\',\\n \\'sample\\',\\n \\'seed\\',\\n \\'set_state\\',\\n \\'shuffle\\',\\n \\'standard_cauchy\\',\\n \\'standard_exponential\\',\\n \\'standard_gamma\\',\\n \\'standard_normal\\',\\n \\'standard_t\\',\\n \\'triangular\\',\\n \\'uniform\\',\\n \\'vonmises\\',\\n \\'wald\\',\\n \\'weibull\\',\\n \\'zipf\\',\\n]\\n\\n# add these for module-freeze analysis (like PyInstaller)\\nfrom . import _pickle\\nfrom . import _common\\nfrom . import _bounded_integers\\n\\nfrom ._generator import Generator, default_rng\\nfrom .bit_generator import SeedSequence, BitGenerator\\nfrom ._mt19937 import MT19937\\nfrom ._pcg64 import PCG64, PCG64DXSM\\nfrom ._philox import Philox\\nfrom ._sfc64 import SFC64\\nfrom .mtrand import *\\n\\n__all__ += [\\'Generator\\', \\'RandomState\\', \\'SeedSequence\\', \\'MT19937\\',\\n \\'Philox\\', \\'PCG64\\', \\'PCG64DXSM\\', \\'SFC64\\', \\'default_rng\\',\\n \\'BitGenerator\\']\\n\\n\\ndef __RandomState_ctor():\\n \"\"\"Return a RandomState instance.\\n\\n This function exists solely to assist (un)pickling.\\n\\n Note that the state of the RandomState returned here is irrelevant, as this\\n function\\'s entire purpose is to return a newly allocated RandomState whose\\n state pickle can set. Consequently the RandomState returned by this function\\n is a freshly allocated copy with a seed=0.\\n\\n See https://github.com/numpy/numpy/issues/4763 for a detailed discussion\\n\\n \"\"\"\\n return RandomState(seed=0)\\n\\n\\nfrom numpy._pytesttester import PytestTester\\ntest = PytestTester(__name__)\\ndel PytestTester\\n'" + ] + }, + "metadata": {} + } + ], + "id": "e2e6f3f7" + }, + { + "cell_type": "markdown", + "source": "# Модуль inspect --- информация об объектах в runtime\n\n* Не вся информация может быть доступна через магические методы\n* Недоступную информацию можно получить через модуль inspect", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "id": "8c0cfc80" + }, + { + "cell_type": "code", + "source": "import inspect\n\ndef add(a,b): return a + b\ninspect.isfunction(add)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 2, + "outputs": [ + { + "execution_count": 2, + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {} + } + ], + "id": "f49084f4" + }, + { + "cell_type": "code", + "source": "inspect.getsource(add)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 12, + "outputs": [ + { + "execution_count": 12, + "output_type": "execute_result", + "data": { + "text/plain": [ + "'def add(a,b): return a + b\\n'" + ] + }, + "metadata": {} + } + ], + "id": "7de58194" + }, + { + "cell_type": "code", + "source": "from numpy import random\ninspect.getsource(random)", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": 3, + "outputs": [ + { + "execution_count": 3, + "output_type": "execute_result", + "data": { + "text/plain": [ + "'\"\"\"\\n========================\\nRandom Number Generation\\n========================\\n\\nUse ``default_rng()`` to create a `Generator` and call its methods.\\n\\n=============== =========================================================\\nGenerator\\n--------------- ---------------------------------------------------------\\nGenerator Class implementing all of the random number distributions\\ndefault_rng Default constructor for ``Generator``\\n=============== =========================================================\\n\\n============================================= ===\\nBitGenerator Streams that work with Generator\\n--------------------------------------------- ---\\nMT19937\\nPCG64\\nPCG64DXSM\\nPhilox\\nSFC64\\n============================================= ===\\n\\n============================================= ===\\nGetting entropy to initialize a BitGenerator\\n--------------------------------------------- ---\\nSeedSequence\\n============================================= ===\\n\\n\\nLegacy\\n------\\n\\nFor backwards compatibility with previous versions of numpy before 1.17, the\\nvarious aliases to the global `RandomState` methods are left alone and do not\\nuse the new `Generator` API.\\n\\n==================== =========================================================\\nUtility functions\\n-------------------- ---------------------------------------------------------\\nrandom Uniformly distributed floats over ``[0, 1)``\\nbytes Uniformly distributed random bytes.\\npermutation Randomly permute a sequence / generate a random sequence.\\nshuffle Randomly permute a sequence in place.\\nchoice Random sample from 1-D array.\\n==================== =========================================================\\n\\n==================== =========================================================\\nCompatibility\\nfunctions - removed\\nin the new API\\n-------------------- ---------------------------------------------------------\\nrand Uniformly distributed values.\\nrandn Normally distributed values.\\nranf Uniformly distributed floating point numbers.\\nrandom_integers Uniformly distributed integers in a given range.\\n (deprecated, use ``integers(..., closed=True)`` instead)\\nrandom_sample Alias for `random_sample`\\nrandint Uniformly distributed integers in a given range\\nseed Seed the legacy random number generator.\\n==================== =========================================================\\n\\n==================== =========================================================\\nUnivariate\\ndistributions\\n-------------------- ---------------------------------------------------------\\nbeta Beta distribution over ``[0, 1]``.\\nbinomial Binomial distribution.\\nchisquare :math:`\\\\\\\\chi^2` distribution.\\nexponential Exponential distribution.\\nf F (Fisher-Snedecor) distribution.\\ngamma Gamma distribution.\\ngeometric Geometric distribution.\\ngumbel Gumbel distribution.\\nhypergeometric Hypergeometric distribution.\\nlaplace Laplace distribution.\\nlogistic Logistic distribution.\\nlognormal Log-normal distribution.\\nlogseries Logarithmic series distribution.\\nnegative_binomial Negative binomial distribution.\\nnoncentral_chisquare Non-central chi-square distribution.\\nnoncentral_f Non-central F distribution.\\nnormal Normal / Gaussian distribution.\\npareto Pareto distribution.\\npoisson Poisson distribution.\\npower Power distribution.\\nrayleigh Rayleigh distribution.\\ntriangular Triangular distribution.\\nuniform Uniform distribution.\\nvonmises Von Mises circular distribution.\\nwald Wald (inverse Gaussian) distribution.\\nweibull Weibull distribution.\\nzipf Zipf\\'s distribution over ranked data.\\n==================== =========================================================\\n\\n==================== ==========================================================\\nMultivariate\\ndistributions\\n-------------------- ----------------------------------------------------------\\ndirichlet Multivariate generalization of Beta distribution.\\nmultinomial Multivariate generalization of the binomial distribution.\\nmultivariate_normal Multivariate generalization of the normal distribution.\\n==================== ==========================================================\\n\\n==================== =========================================================\\nStandard\\ndistributions\\n-------------------- ---------------------------------------------------------\\nstandard_cauchy Standard Cauchy-Lorentz distribution.\\nstandard_exponential Standard exponential distribution.\\nstandard_gamma Standard Gamma distribution.\\nstandard_normal Standard normal distribution.\\nstandard_t Standard Student\\'s t-distribution.\\n==================== =========================================================\\n\\n==================== =========================================================\\nInternal functions\\n-------------------- ---------------------------------------------------------\\nget_state Get tuple representing internal state of generator.\\nset_state Set state of generator.\\n==================== =========================================================\\n\\n\\n\"\"\"\\n__all__ = [\\n \\'beta\\',\\n \\'binomial\\',\\n \\'bytes\\',\\n \\'chisquare\\',\\n \\'choice\\',\\n \\'dirichlet\\',\\n \\'exponential\\',\\n \\'f\\',\\n \\'gamma\\',\\n \\'geometric\\',\\n \\'get_state\\',\\n \\'gumbel\\',\\n \\'hypergeometric\\',\\n \\'laplace\\',\\n \\'logistic\\',\\n \\'lognormal\\',\\n \\'logseries\\',\\n \\'multinomial\\',\\n \\'multivariate_normal\\',\\n \\'negative_binomial\\',\\n \\'noncentral_chisquare\\',\\n \\'noncentral_f\\',\\n \\'normal\\',\\n \\'pareto\\',\\n \\'permutation\\',\\n \\'poisson\\',\\n \\'power\\',\\n \\'rand\\',\\n \\'randint\\',\\n \\'randn\\',\\n \\'random\\',\\n \\'random_integers\\',\\n \\'random_sample\\',\\n \\'ranf\\',\\n \\'rayleigh\\',\\n \\'sample\\',\\n \\'seed\\',\\n \\'set_state\\',\\n \\'shuffle\\',\\n \\'standard_cauchy\\',\\n \\'standard_exponential\\',\\n \\'standard_gamma\\',\\n \\'standard_normal\\',\\n \\'standard_t\\',\\n \\'triangular\\',\\n \\'uniform\\',\\n \\'vonmises\\',\\n \\'wald\\',\\n \\'weibull\\',\\n \\'zipf\\',\\n]\\n\\n# add these for module-freeze analysis (like PyInstaller)\\nfrom . import _pickle\\nfrom . import _common\\nfrom . import _bounded_integers\\n\\nfrom ._generator import Generator, default_rng\\nfrom .bit_generator import SeedSequence, BitGenerator\\nfrom ._mt19937 import MT19937\\nfrom ._pcg64 import PCG64, PCG64DXSM\\nfrom ._philox import Philox\\nfrom ._sfc64 import SFC64\\nfrom .mtrand import *\\n\\n__all__ += [\\'Generator\\', \\'RandomState\\', \\'SeedSequence\\', \\'MT19937\\',\\n \\'Philox\\', \\'PCG64\\', \\'PCG64DXSM\\', \\'SFC64\\', \\'default_rng\\',\\n \\'BitGenerator\\']\\n\\n\\ndef __RandomState_ctor():\\n \"\"\"Return a RandomState instance.\\n\\n This function exists solely to assist (un)pickling.\\n\\n Note that the state of the RandomState returned here is irrelevant, as this\\n function\\'s entire purpose is to return a newly allocated RandomState whose\\n state pickle can set. Consequently the RandomState returned by this function\\n is a freshly allocated copy with a seed=0.\\n\\n See https://github.com/numpy/numpy/issues/4763 for a detailed discussion\\n\\n \"\"\"\\n return RandomState(seed=0)\\n\\n\\nfrom numpy._pytesttester import PytestTester\\ntest = PytestTester(__name__)\\ndel PytestTester\\n'" + ] + }, + "metadata": {} + } + ], + "id": "8fd68968" + }, + { + "cell_type": "code", + "source": "", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "execution_count": null, + "outputs": [], + "id": "3d84fffb" + } + ] +} \ No newline at end of file